Принцип работы синхронного двигателя

Содержание:

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле.
До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ).
Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 .
В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного
тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда
энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий
трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.

На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.

Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

Синхронный генератор. Принцип действия

Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке
статора, и частотой вращения ротора n , называемой синхронной частотой вращения:

n = f / p

где p – число пар полюсов обмотки статора и ротора.
Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:

n = 60·f / p

Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС EA , EB и EC , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.

C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токиIA, IB, IC , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе

e = 2Blwv = 2πBlwDn

Здесь:B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;w – количество витков;v = πDn – линейная скорость движения полюсов ротора относительно статора, м/с;D – внутренний диаметр сердечника статора, м.

Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста-
тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду B = Bmax sinα , то ЭДС генератора также будет синусоидальной. В
синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.

Так, если воздушный зазор δ постоянен (рис. 1.2), то магнитная индукция B в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен δmax (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде.
Частота ЭДС синхронного генератора f (Гц) пропорциональна синхронной частоте вращения ротора n (об/с)

f = pn

где p – число пар полюсов.
В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1.
Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).

Производители электродвигателей

Российские производители электродвигателей

Регион Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
СДОВ СДПМ, серво СРД, СГД Шаговый
Краснодарский край Армавирский электротехнический завод
Свердловская область Баранчинский электромеханический завод
Владимир Владимирский электромоторный завод
Санкт-Петербург ВНИТИ ЭМ
Москва ЗВИМосковский электромеханический завод имени Владимира Ильича
Пермь ИОЛЛА
Республика Марий Эл Красногорский завод «Электродвигатель»
Воронеж МЭЛ
Новочеркасск Новочеркасский электровозостроительный завод
Санкт-Петербург НПО «Электрические машины»
Томская область НПО Сибэлектромотор
Новосибирск НПО Элсиб
Удмуртская республика Сарапульский электрогенераторный завод
Киров Электромашиностроительный завод Лепсе
Санкт-Петербург Ленинградский электромашиностроительный завод
Псков Псковский электромашиностроительный завод
Ярославль Ярославский электромашиностроительный завод

Аббревиатура:

  • АДКР —
  • АДФР —
  • СДОВ — синхронный двигатель с обмоткой возбуждения
  • СДПМ — синхронный двигатель с постоянными магнитами
  • СРД — синхронный реактивный двигатель
  • СГД — синхронный гистерезисный двигатель
  • УД — универсальный двигатель
  • КДПТ — коллекторный двигатель постоянного тока
  • КДПТ ОВ —
  • КДПТ ПМ —

Производители электродвигателей ближнего зарубежья

Страна Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
СДОВ СДПМ, серво СРД, СГД Шаговый
Беларусь Могилевский завод «Электродвигатель»
Беларусь Полесьеэлектромаш
Украина Харьковский электротехнический завод «Укрэлектромаш»
Молдова Электромаш
Украина Электромашина
Украина Электромотор
Украина Электротяжмаш

Производители электродвигателей дальнего зарубежья

Страна Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
СДОВ СДПМ, серво СРД, СГД Шаговый
Швейцария ABB Limited
США Allied Motion Technologies Inc.
США Ametek Inc.
США Anaheim automation
США Arc System Inc.
Германия Baumueller
Словения Domel
США Emerson Electric Corporation
США General Electric
США Johnson Electric Holdings Limited
Германия Liebherr
Швейцария Maxon motor
Япония Nidec Corporation
Германия Nord
США Regal Beloit Corporation
Германия Rexroth Bosch Group
Германия Siemens AG
Бразилия WEG

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
И.В.Савельев. Курс общей физики, том I. Механика, колебания и волны, молекулярная физика.-М.:Наука, 1970.
ГОСТ 29322-92 (МЭК 38-83) Стандартные напряжения.
ГОСТ 16264.0-85 Электродвигатели малой мощности
А.И.Вольдек, В.В.Попов. Электрические машины. Машины переменного тока: Учебник для вузов.- СПб.: Питер, 2007.
Paul Waide, Conrad U. Brunner. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems. International Energy Agency Working Paper, Energy Efficiency Series.: Paris, 2011.
Dr. J. Merwerth. The hybrid-synchronous machine of the new BMW i3 & i8 challenges with electric traction drives for vehicles. BMW Group, Workshop University Lund: Lund, 2014.

Пуск синхронного двигателя

Одним
из главных недостатков синхронных
двигателей является сложность их пуска
в ход. Пуск синхронных двигателей может
быть осуществлен при помощи вспомогательного
пускового двигателя или путем асинхронного
пуска.

Пуск
синхронного двигателя при помощи
вспомогательного двигателя. Если ротор
синхронного двигателя с возбужденными
полюсами развернуть другим, вспомогательным
двигателем до скорости вращения поля
статора, то магнитные полюсы статора,
взаимодействуя с полюсами ротора,
заставят ротор вращаться далее
самостоятельно без посторонней помощи,
в такт с полем статора, т. е. синхронно
(откуда эти двигатели и получили свое
название).

Для
осуществления пуска необходимо, чтобы
число пар полюсов асинхронного двигателя
было меньше числа пар полюсов синхронного
двигателя, ибо при этих условиях
вспомогательный асинхронный двигатель
может развернуть ротор синхронного
двигателя
до синхронной скорости.

Порядок
пуска синхронного двигателя следующий.
Включая рубильник 3, пускают вспомогательный
асинхронный двигатель 2, который
разворачивает ротор синхронного
двигателя 1 до скорости, соответствующей
скорости поля статора. Скорость вращения
вспомогательного двигателя определяется
по тахометру1. Затем, включая рубильник
4 постоянного тока, возбуждают полюсы
ротора. Чтобы включить синхронный
двигатель в сеть трехфазного тока, его
нужно синхронизировать так же, как и
при включении синхронного генератора
на параллельную работу. Для этого
реостатом 5 устанавливают такое
возбуждение, чтобы напряжение обмотки
статора по вольтметру V было равно
напряжению сети, указываемому вольтметром
V1.

Электролампы
6, включенные параллельно ножам рубильника
7 трех-фазной сети, при разомкнутом
рубильнике будут мигать. Сначала мигание
будет частым, но если изменять скорость
вращения вспомогательного асинхронного
двигателя, то лампы будут мигать . все
реже и реже. Синхронный двигатель можно
включить в сеть трехфазного тока
рубильником 7 тогда, когда все три лампы
одновременно погаснут. Ротор двигателя
при этом входит в синхронизм и может
далее вращаться самостоятельно. Теперь
вспомогательный двигатель 2 рубильником
3 можно отключить от сети.

Сложность
пуска и необходимость вспомогательного
двигателя являются существенными
недостатками этого способа пуска
синхронных двигателей. Поэтому в
настоящее время он применяется редко.

Асинхронный
пуск синхронного двигателя. Для
осуществления этого способа пуска в
полюсных наконечниках полюсов ротора
укладывается дополнительная
короткозамкнутая обмотка. Так как во
время пуска в обмотке возбуждения 1
двигателя наводится большая э. д. с, то
по соображениям безопасности она
замыкается рубильником 2 на сопротивление
3

При
включении напряжения
трехфазной сети
в обмотку статора 4 синхронного двигателя
возникает вращающееся магнитное поле,
которое, пересекая короткозамкнутую
(пусковую) обмотку, заложенную в полюсных
наконечниках ротора, индуктирует в ней
токи.

Эти
токи, взаимодействуя с вращающимся
полем статора, приведут ротор во вращение.
При достижении ротором наибольшего
числа оборотов (95—97% синхронной скорости)
рубильник 2 переключают так, чтобы
обмотку ротора включить в сеть постоянного
напряжения.

Недостатком
асинхронного пуска является большой
пусковой ток (в 5—7 раз больший рабочего
тока). Пусковой ток вызывает падение
напряжения в сети, а это отражается на
работе других потребителей. Для уменьшения
пускового тока применяют пуск при
пониженном напряжении с помощью реактора
2 или автотрансформатора.

В
настоящее время применяют почти
исключительно асинхронный пуск синхронных
двигателей ввиду его простоты и
надежности. Существуют также схемы
автоматического асинхронного пуска
синхронных двигателей

Основные параметры электродвигателя

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

,

  • где M – вращающий момент, Нм,
  • F – сила, Н,
  • r – радиус-вектор, м

Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле

,

  • где Pном – номинальная мощность двигателя, Вт,
  • nном — номинальная частота вращения, мин-1

Начальный пусковой момент — момент электродвигателя при пуске.

Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)

Мощность электродвигателя

Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

Мощность электродвигателя постоянного тока

Механическая мощность

Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

,

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t — время, с

Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .

,

где s – расстояние, м

Для вращательного движения

,

где – угол, рад,

,

где – углавая скорость, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

,

  • где – коэффициент полезного действия электродвигателя,
  • P1 — подведенная мощность (электрическая), Вт,
  • P2 — полезная мощность (), Вт
  • При этом

потери в электродвигатели обусловлены:
электрическими потерями — в виде тепла в результате нагрева проводников с током;
магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

где n — частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

,

  • где J – момент инерции, кг∙м2,
  • m — масса, кг

Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)

1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)

Момент инерции связан с моментом силы следующим соотношением

,

где – угловое ускорение, с-2

,

Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .

Электрическая постоянная времени

Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

где – постоянная времени, с

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

7.3.1. Усройство и принцип действия синхронного электродвигателя.

Характерный признак синхронного
двигателя – вращение рото­ра с
синхронной частотой n1
=

ƒ160
/pнезависимо от нагрузки на валу. Поэтому
синхронные двигатели используют в
системах автоматики для привода
механизмов, требующих строго стабильной
частоты вращения.

Синхронный двигатель, как и асинхронный,
состоит из непод­вижного статора и
вращающегося ротора, разделенных
воздушным зазором (у синхронных двигателей
этот зазор несколько больше). Существуют
конструктивные разновидности исполнения
синхронных двигателей малой мощности,
отличающиеся в основном устройством
ротора: явнополюсные с электромагнитным
возбуждением, явнополюсные с возбуждением
постоянными магнитами, явнополюсные
ре­активные (с невозбужден-ным ротором),
неявнополюсные гистерезисные.

Рассмотрим синхронные явнополюсные
двигатели
с
электромаг­нитным возбуждением
.

Эти двигатели изготавливаются обычно
мощностью в несколько киловатт и более
и поэтому в устройствах автоматики
широкого при­менения не получили.
Однако основные положения теории этих
дви­гателей используются при изучении
синхронных двигателей малой мощности
с возбуждением постоянными магнитами
и других типов.

Для изучения принципа действия синхронного
явнополюсного двигателя с электромагнитным
возбуждением используем модель,
представляющую собой две разделенные
воздушным зазором магнит­ные системы
с явно выраженными полюсами – внешнюю
1и внут­реннюю
2
(рис.
6). Если внешняя система полюсов неподвижна,
то благодаря силам магнитного притяжения
внутренняя система полю­сов (ротор)
расположится так, что ее полюсы будут
находиться под полюсами внешней системы
противоположной полярности. При этом
силы
F
Mмагнитного притяжения, действу-ющие
на внутреннюю сис­тему, не будут
создавать электромагнитного момента
(рис. 7,а), так как они направлены
радиально (по оси полюсов).

Если внешнюю систему полюсов вращать
с небольшой частотой n1, то в
начальный момент времени эта система
сместится относи­тельно внутренней
на некоторый угол θ (рис. 7,б). При
этом вектор силы магнитного притяженияFMтакже повернется относительно оси
полюса ротора. Теперь эта сила состоит
из двух составляющих:FM=
F
n
+ F
t
причем нормальная составляющая
F
nнаправлена по оси полюса рото-

— 4 —

ра,
а тангенциальная
F
t
перпендикулярно оси полюса. Совокупность
составляющих
F
tдействующих
на все полюсы ротора, создает на роторе
электромагнитный вращающий моментМ,
приво­дящий ротор во вращение с
синхронной частотойn1, т. е.
синхронно вращению внешней системе
полюсов.

Рис.
6. Упрощенная модель синхронного

двигателя:
Рис. 7. Возникновение
электромагнитного

а
– внешняя магнитная система;
момента на роторе синхронного

б
– внутренняя магнитная система.
двигателя.

Трехфазный синхронный двигатель
отличается от рассмотрен­ной модели
тем, что в нем вместо внешней системы
полюсов
име­ется неявнополюсный
статор с распределенной трехфазной
обмот­кой, аналогичный статору
асинхронного трехфазного двигателя.
Ротор синхронного двигателя – явнополюсной
конструкции с электромагнитным
возбуждением. При этом на полюсах ротора
2
располагают
полюсные

катушки
3(рис. 8), которые при последо­вательном
соединении обра­зуют обмотку возбуждения
(ОВ).

При подключении ОВ к источнику постоянного
тока возникает магнитный поток возбуждения
ФВ, силовые ли­нии которого
сцеплены с об­моткой статора1.
При включе­нии обмотки статора в
трех­фазную сеть создается вра­щающееся
с синхронной час­тотойn1магнитное поле с та­ким же числом
полюсов, как на роторе. Благодаря
взаимодей­ствию полей статора и ротора
возникает электромагнитный момент,
вращающий ротор ссин-хронной
частотой. В результате электрическая
энергия сети преобразуется в механическую
энергию вращения.

Предположим, что ротор двигателя враща-

Рис.
8.
Магнитная система явнополюсногоется с частотой, отли­чающейся
от частоты

синхронного
двигателя (2р
= 4): вращения
поля статора, тогда в некоторые

1
– обмотка статора; 2
– полюса ротора; мо­менты
времени возбужденные полюса ро-

3
– полюсные катушки. тора
окажутся под одно­именными полюсами

поля статора, возникнут силы магнитного
от-

— 5 —

талкивания
Суммарный электромагнитный момент
станет равным нулю и ротор остановится.
На рис. 9,
а
показана конструкция ротора синхронного
двигателя с явно выраженными полюсами.

Особенности синхронных моделей

Вышеописанный принцип работы как раз иллюстрирует работу синхронного двигателя. То есть в нем реализуется взаимодействие полюсов индуктора и статорного магнитного поля. Но и в таких системах могут быть свои различия. Например, и синхронный, и асинхронный двигатель могут оснащаться электромагнитами. В случае с синхронными агрегатами такого типа ток будет направляться на ротор, минуя контакт щетка-кольцо. Постоянные же магниты применяются в двигателях, базирующихся на жестких дисках. Также существуют и обращенные конструкции. В них якорные потоки находятся на роторе, а индукция – на статоре.

Для включения синхронного двигателя требуется высокий разгон по частоте, чтобы появилась возможность подстройки вращения двух функциональных компонентов. В конструкциях, где индуктор находится на статоре, поле ротора остается неподвижным относительно якоря. И напротив, если устройство предполагает обратную конструкцию, то «ввод в синхронизацию» будет осуществляться через ожидание статора. Момент ожидания зависит от того, с какой нагрузкой работает вентильный двигатель, и какая частота является оптимальной для активизации его индуктора.

Принципы работы

Все электродвигатели имеют неподвижный статор и вращающийся ротор. Разница между асинхронным и синхронным двигателями состоит в принципах создания полюсов. В асинхронном электродвигателе они создаются явлением индукции. Во всех других электродвигателях используются постоянные магниты или катушки с током, создающие магнитное поле.

Особенности синхронных двигателей

Ведущие агрегаты синхронной машины — якорь и индуктор. Якорем является статор, а индуктор располагается на роторе. Под действием переменного тока в якоре образуется вращающееся магнитное поле. Оно сцепляется с магнитным полем индуктора, образованным полюсами постоянных магнитов или катушек с постоянным током. В результате этого взаимодействия энергия электричества преобразуется в кинетическую энергию вращения.

Ротор синхронной машины имеет частоту вращения такую же, как у поля статора. Достоинства синхронных электродвигателей:

  • Конструктивно используется и как двигатель, и как генератор.
  • Частота вращения, не зависящая от нагрузки.
  • Большой коэффициент полезного действия.
  • Малая трудоёмкость в ремонте и обслуживании.
  • Высокая степень надёжности.

Синхронные машины широко используются как электродвигатели большой мощности для небольшой скорости вращения и постоянной нагрузки. Генераторы применяются там, где требуется автономный источник питания.

Имеются у синхронной машины и недостатки:

  • Требуется источник постоянного тока для питания индуктора.
  • Отсутствует начальный пусковой момент, для запуска требуется применение внешнего момента или асинхронного пуска.
  • Щётки и коллекторы быстро выходят из строя.

Современные синхронные агрегаты содержат в индукторе дополнительно к обмотке, питаемой постоянным током, ещё и пусковую короткозамкнутую обмотку, которая предназначена для пуска в асинхронном режиме.

Отличительные черты асинхронных двигателей

Вращающееся магнитное поле статора асинхронного двигателя наводит индукционные токи в роторе, которые образуют собственное магнитное поле. Взаимодействие полей приводит ротор во вращение. Частота вращения ротора при этом отстаёт от частоты вращения магнитного поля. Именно это свойство отражено в названии двигателя.

Асинхронные электродвигатели бывают двух типов: с короткозамкнутым и с фазным ротором.

Бытовые приборы, такие как вентилятор или пылесос, обычно снабжены двигателями с короткозамкнутым ротором, который представляет собой «беличье колесо». Все стержни замыкаются приваренными с обеих сторон дисками. Взаимодействие магнитного поля статора с наведёнными токами в роторе образовывает электромагнитную силу, которая действует на ротор в направлении вращения поля статора. Крутящий момент на валу электродвигателя создаётся всеми электромагнитными силами от каждого проводника.

В электродвигателе с фазным ротором применяется тот же статор, что и для мотора с короткозамкнутым ротором. А в ротор добавляются обмотки трёх фаз, соединённые в «звезду». К ним можно при пуске двигателя подключать реостаты, регулирующие пусковые токи. С помощью реостатов можно регулировать и частоту вращения двигателя.

Достоинствами асинхронных двигателей можно назвать:

  • Питание непосредственно от сетей переменного тока.
  • Простоту устройства и сравнительно невысокую стоимость.
  • Возможность использования в бытовых приборах с применением однофазного подключения.
  • Низкое потребление энергии и экономичность.

Серьёзные недостатки — сложная регулировка частоты вращения и большие теплопотери. Для предотвращения перегрева корпус агрегата делается ребристым, и на вал электродвигателя устанавливается крыльчатка для охлаждения.

Разновидности синхронных машин

Синхронный компенсатор на подстанции 500 кВ «Златоуст»

Гидрогенератор — явнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от гидравлической турбины (при низких скоростях вращения 50-600 об/мин).

Турбогенератор — неявнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от паровой или газовой турбины при высоких скоростях вращения ротора — 6000 (редко), 3000, 1500 об/мин.

Синхронный компенсатор — синхронный двигатель, предназначенный для выработки реактивной мощности, работающий без нагрузки на валу (в режиме холостого хода); при этом по обмотке якоря проходит практически только реактивный ток. Синхронный компенсатор может работать в режиме улучшения коэффициента мощности или в режиме стабилизации напряжения. Дает ёмкостную нагрузку.

Машина двойного питания (в частности АСМ) — синхронная машина с питанием обмоток ротора и статора токами разной частоты, за счёт чего создаются несинхронные режимы работы.

Ударный генератор — синхронный генератор (как правило, трёхфазного тока), предназначенный для кратковременной работы в режиме короткого замыкания (КЗ).

Также существуют безредукторные, шаговые, индукторные, гистерезисные, бесконтактные синхронные двигатели.

Бесконтактная синхронная машина

В классической синхронной машине имеется слабое место — контактные кольца со щётками, изнашивающиеся быстрее других частей машины из-за электроэрозии и простого механического износа. Кроме того, искрение щёток может стать причиной взрыва. Поэтому сначала в авиации, а позже и в других областях (в частности, на автономных дизель-генераторах) получили распространение бесконтактные трёхмашинные синхронные генераторы. В корпусе такого агрегата размещены три машины — подвозбудитель, возбудитель и генератор, их роторы вращаются на общем валу. Подвозбудитель — синхронный генератор с возбуждением от вращающихся на роторе постоянных магнитов, его напряжение подаётся в блок управления генератором, где выпрямляется, регулируется и подаётся в обмотку статора возбудителя. Поле статора наводит в обмотке возбудителя ток, выпрямляемый размещённым на валу блоком вращающихся выпрямителей (БВВ) и идущий в обмотку возбуждения генератора. Генератор уже вырабатывает ток, идущий к потребителям.

Такая схема обеспечивает как отсутствие иных механических частей в двигателе, кроме подшипников, так и автономность работы генератора — всё время, пока генератор вращается, подвозбудитель даёт напряжение, которое может быть использовано для питания цепей управления генератором.

Конструкции и типы синхронного электродвигателя с постоянными магнитами

Синхронный электродвигатель с постоянными магнитами, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть.


Синхронный электродвигатель со встроенными постоянными магнитами

Обычно ротор располагается внутри статора электродвигателя, также существуют конструкции с внешним ротором — электродвигатели обращенного типа.

Конструкции синхронного двигателя с постоянными магнитами: слева — стандартная, справа обращенная.

Ротор состоит из постоянных магнитов. В качестве постоянных магнитов используются материалы с высокой коэрцитивной силой.

  • По конструкции ротора синхронные двигатели делятся на:
  • электродвигатели с явно выраженными полюсами;
  • электродвигатели с неявно выраженными полюсами.

Электродвигатель с неявно выраженными полюсами имеет равную индуктивность по продольной и поперечной осям Ld = Lq, тогда как у электродвигателя с явно выраженными полюсами поперечная индуктивность не равна продольной Lq ≠ Ld.

Сечение роторов с разным отношением Ld/Lq. Черным обозначены магниты. На рисунке д, е представлены аксиально-расслоенные роторы, на рисунке в и з изображены роторы с барьерами.

  • Также по конструкции ротора СДПМ делятся на:
  • синхронный двигатель c поверхностной установкой постоянных магнитов(англ. SPMSM — surface permanent magnet synchronous motor);
  • синхронный двигатель со встроенными (инкорпорированными) магнитами(англ. IPMSM — interior permanent magnet synchronous motor).

Ротор синхронного двигателя c поверхностной установкой постоянных магнитов

Ротор синхронного двигателя со встроенными магнитами

Статор состоит из корпуса и сердечника с обмоткой. Наиболее распространены конструкции с двух- и трехфазной обмоткой.

  • В зависимости от конструкции статора синхронный двигатель с постоянными магнитами бывает:
  • с распределенной обмоткой;
  • с сосредоточенной обмоткой.


Статор электродвигателя с распределенной обмоткой


Статор электродвигателя с сосредоточенной обмоткой

Распределенной называют такую обмотку, у которой число пазов на полюс и фазу Q = 2, 3,…., k.

Сосредоточенной называют такую обмотку, у которой число пазов на полюс и фазу Q = 1. При этом пазы расположены равномерно по окружности статора. Две катушки, образующие обмотку, можно соединить как последовательно, так и параллельно. Основной недостаток таких обмоток — невозможность влияния на форму кривой ЭДС .


Схема трехфазной распределенной обмотки


Схема трехфазной сосредоточенной обмотки

Форма обратной ЭДС электродвигателя может быть:
трапецеидальная;
синусоидальная.

Форма кривой ЭДС в проводнике определяется кривой распределения магнитной индукции в зазоре по окружности статора.

Известно, что магнитная индукция в зазоре под явно выраженным полюсом ротора имеет трапециидальную форму. Такую же форму имеет и наводимая в проводнике ЭДС. Если необходимо создать синусоидальную ЭДС, то полюсным наконечникам придают такую форму, при которой кривая распределения индукции была бы близка к синусоидальной. Этому способствуют скосы полюсных наконечников ротора .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector