Устройство, виды и принцип работы рулевого механизма

Рулевой механизм

От колонки усилие передается рулевому механизму (червячному, винтовому или реечному), который усилие увеличивает и передает приводу. Самый распространенный из них – реечный, т. к. большинство легковых автомобилей оборудовано именно им. Он состоит из:

1. Рулевой рейки.

2. Рулевых тяг.

3. Рулевого наконечника.

При вращении рулевого колеса усилие передается на шестерню, приводящую в действие рейку. Она, в свою очередь, поворачивается направо или налево, в зависимости от направления поворота рулевого колеса. При движении рейки поворачиваются и рулевые тяги и поворачивают колеса.

Реечный механизм отличает простота, надежность, жесткость и высокий КПД. В то же время он очень чувствителен к ударным нагрузкам от неровных поверхностей и склонен к вибрациям. Из-за вышеописанных особенностей подобная схема используется в основном на легковых автомобилях с передним приводом и независимой подвеской.

Существует и другая система рулевого управления, а именно – с червячным механизмом. Она состоит из глобоидного червяка (стержня с резьбой и переменным диаметром), соединенного с валом, и ролика. При вращении руля ролик обкатывает червяк, который вращает ведомую шестерню, приводящую в движение сошку. Она же, в свою очередь, перемещает рулевые тяги и с их помощью происходит поворот колес.

Червячный механизм намного сложнее реечного (и, естественно, дороже в производстве), наличие большого количества соединений требует периодической регулировки, однако он менее чувствителен к ударным нагрузкам и обеспечивает большие углы поворота управляемых колес. Как следствие, заметно возрастает маневренность. Он применяется на легковых автомобилях повышенной проходимости, автобусах и небольших грузовых автомобилях. Также червячные механизмы устанавливались на старых отечественных автомобилях (подобное рулевое управление «ВАЗ» использовал при создании модели «Жигули»).

И, наконец, последний вид рулевых механизмов – винтовой. В его конструкцию входят:

— винт на валу рулевого колеса;

— перемещающаяся по винту гайка;

— нарезанная на гайке зубчатая рейка;

— соединенный с гайкой зубчатый сектор;

— рулевая сошка.

Винт и гайка соединяются с помощью шариков, что ведет к заметно меньшему износу.

При повороте руля винт вращается, перемещая гайку, шарики начинают циркулировать, в то время как гайка (с помощью рейки) перемещает зубчатый сектор. Вследствие этого перемещается сошка, и, как вы уже успели догадаться, с помощью тяг осуществляется поворот колес.

Этот механизм рулевого управления устанавливается на тяжелые грузовые автомобили и машины представительского класса.

Неисправности рулевого управления

О том, что с рулевым управлением проблемы, может свидетельствовать один из следующих «симптомов»:

  • увеличение люфта (то есть свободного хода) руля, из-за чего управлять машиной становится сложнее;
  • сильное сопротивление рулевого колеса при вращении;
  • заедание или клин руля;
  • стук, другие посторонние звуки при выполнении поворота;
  • вытекание масла из картера системы.

Также о проблемах может говорить уменьшенный угол поворота колес при полном повороте руля.

Чаще всего встречаются следующие неисправности.

  • Появление зазоров в шарнирных креплениях тяги или нарушение зацепления червячной передачи. Такая проблема вызывает увеличенный ход руля. Диагностируется наблюдением за работой механизма во время поворота. «Лечится» неисправность заменой шарнира или корректной настройкой червячной передачи.
  • Износ. Чаще всего изнашиваются втулки или ось маятникового рычага, в результате чего при повороте начинают появляться посторонние звуки (чаще всего – характерный стук). Иногда помогает затягивание оси рычага имеющейся гайкой, но в большинстве случаев требуется замена изношенных компонентов.
  • Деформация рулевых тяг. Вызывает усиление сопротивления руля при выполнении поворота. Решается проблема заменой тяг на новые или их выпрямлением до исходной формы.
  • Недостаток масла в картере. Также вызывает более тугой проворот руля. Обычно вызывается износом сальников, в результате чего масло начинает подтекать. Решается проблема заменой этих деталей, а также восполнением потерянного масла путем дозаправки системы.
  • Обрыв привода насоса гидроусилителя. Приводит к тому, что поворот осуществляется без усиления и руль становится очень тугим. Устраняется путем замены приводного ремня.

Следует отметить, что проблемы с поворотом могут быть вызваны не рулевой системой, а некорректной балансировкой колес или недостаточным давлением воздуха в шинах.

Чтобы избежать проблем с системой рулевого управления, необходим ее периодический осмотр. Особенно это касается гидроусилителя – он является одним из самых «капризных» элементов. Если своевременно устранять мелкие неприятности, более серьезных поломок не возникнет. А значит, не возникнет и проблем при эксплуатации транспортного средства.

Устройство и работа гидроусилителя руля — ГУР

Современные гидроусилители интегрируются в рулевой механизм своим исполнительным механизмом. А в качестве рабочей жидкости применяют трансмиссионное масло ATF.

На рисунке представлен реечный рулевой механизм с гидроусилителем. Расположение поршня гидроусилителя зависит от крепления тяг. Если тяги крепятся по бокам, поршень размещен посередине корпуса. Поршень может располагаться сбоку, если тяги крепятся к центральной части.

Насос гидроусилителя располагается на силовом агрегате и приводится в действие от ремня коленчатого вала. Насос ГУР предназначен для создания давления масла в системе и его циркуляции (простым языком для перекачивания масла из бачка в распределитель), с давлением от 50 до 10 атм.

Распределитель предназначен для распределения рабочей жидкости по системе (т.е. дозировано улучшает поворот управляемых колес в зависимости от усилия на руле). Распределители бывают роторные и осевые, которые отличаются движением золотника.

Осевой золотник — если золотник распределителя движется поступательно.

Роторный золотник – если золотник осуществляет вращательное движение.

В этом случае используют специальное мониторинговое устройство — торсион, который встраивается в разрез рулевого вала.

Гидроцилиндр – элемент гидроусилителя, который приводит в действие поршень со штоком, повышая давления масла в системе.

Соединительные шланги – предназначены для хода рабочей жидкости по системе.

Рабочая жидкость — масло, с помощью которого обеспечивается передача усилия к гидроцилиндру от насоса.

Бачок. Емкость с фильтром для хранения и очистки рабочей жидкости.

Как работает торсион

Если автомобиль движется прямо, никаких усилий к рулевому колесу прикладывать не надо, поэтому торсион не закручен, дозирующие каналы распределителя перекрыты, масло течет в бачок. Когда же автомобиль поворачивает, возникает сопротивление, сопротивление передается и торсион закручивается еще сильнее, пропорционально прикладываемому усилию к рулевому колесу. Золотник открывает дозирующие каналы, и масло начинает поступать в исполнительное устройство. Если рулевое колесо повернуто до упора, открываются предохранительные клапана, давление масла сбрасывается.

Требования к рулевому управлению автомобиля

Рулевое управление любого транспортного средства должно соответствовать следующим требованиям:

  • Обеспечивать достаточную маневренность ТС на любых скоростях. Водитель должен с легкостью задавать нужное направление автомобиля;
  • Оно должно быть легким в использовании, чтобы даже уставший водитель мог безопасно добраться до места отдыха;
  • При повороте колес рулевое управление должно обеспечить максимально чистое качение. На виражах колеса не должны скользить, чтобы автомобиль не терял своей стабильности. Для этого угол наклона и поворота колес должен быть четко выверен;
  • Возвращать колеса обратно в прямолинейное направление (вдоль кузова), после того как водитель прекращает прилагать усилия для поворота;
  • Гасить вибрации при движении по неровному дорожному покрытию;
  • Обладать высокой отзывчивостью на любые команды водителя;
  • Даже при выходе из строя усилителей, механизм должен все равно позволять водителю управлять машиной.

Еще одним параметром, который относится к категории требований для рулевого управления, является люфт руля. Больше о допустимых нормах люфта рассказывается в отдельной статье.

Устройство и работа гидроусилителя руля — ГУР

Современные гидроусилители интегрируются в рулевой механизм своим исполнительным механизмом. А в качестве рабочей жидкости применяют трансмиссионное масло ATF.

На рисунке представлен реечный рулевой механизм с гидроусилителем. Расположение поршня гидроусилителя зависит от крепления тяг. Если тяги крепятся по бокам, поршень размещен посередине корпуса. Поршень может располагаться сбоку, если тяги крепятся к центральной части.

Насос гидроусилителя располагается на силовом агрегате и приводится в действие от ремня коленчатого вала. Насос ГУР предназначен для создания давления масла в системе и его циркуляции (простым языком для перекачивания масла из бачка в распределитель), с давлением от 50 до 10 атм.

Распределитель предназначен для распределения рабочей жидкости по системе (т.е. дозировано улучшает поворот управляемых колес в зависимости от усилия на руле). Распределители бывают роторные и осевые, которые отличаются движением золотника.

Осевой золотник — если золотник распределителя движется поступательно.

Роторный золотник – если золотник осуществляет вращательное движение.

В этом случае используют специальное мониторинговое устройство — торсион, который встраивается в разрез рулевого вала.

Гидроцилиндр – элемент гидроусилителя, который приводит в действие поршень со штоком, повышая давления масла в системе.

Соединительные шланги – предназначены для хода рабочей жидкости по системе.

Рабочая жидкость — масло, с помощью которого обеспечивается передача усилия к гидроцилиндру от насоса.

Бачок. Емкость с фильтром для хранения и очистки рабочей жидкости.

Как работает торсион

Если автомобиль движется прямо, никаких усилий к рулевому колесу прикладывать не надо, поэтому торсион не закручен, дозирующие каналы распределителя перекрыты, масло течет в бачок. Когда же автомобиль поворачивает, возникает сопротивление, сопротивление передается и торсион закручивается еще сильнее, пропорционально прикладываемому усилию к рулевому колесу. Золотник открывает дозирующие каналы, и масло начинает поступать в исполнительное устройство. Если рулевое колесо повернуто до упора, открываются предохранительные клапана, давление масла сбрасывается.

Типы рулевых механизмов

Устройство рулевого механизма различается в зависимости от способа преобразования крутящего момента. По этому параметру выделяют червячный и реечный виды механизмов. Существует еще винтовой тип, принцип работы которого схож с червячной передачей, но он имеет больший КПД и реализует большее усилие.

Червячный рулевой механизм: устройство, принцип работы, преимущества и недостатки

Этот рулевой механизм является одним из «устаревших» устройств. Им оснащены практически все модели отечественной «классики». Механизм применяется на автомобилях с повышенной проходимостью с зависимой подвеской управляемых колес, а также в легких грузовых автомобилях и автобусах.

Схема червячного редуктора

Конструктивно устройство состоит из следующих элементов:

  • рулевой вал;
  • передача «червяк-ролик»;
  • картер;
  • рулевая сошка.

Пара «червяк-ролик» находится в постоянном зацеплении. Глобоидальный червяк представляет собой нижнюю часть рулевого вала, а ролик закреплен на валу сошки. При вращении руля ролик перемещается по зубьям червяка, благодаря чему вал рулевой сошки также поворачивается. Результатом такого взаимодействия является передача поступательных движений на привод и колеса.

Рулевой механизм червячного типа имеет следующие преимущества:

  • возможность поворота колес на больший угол;
  • гашение ударов от дорожных неровностей;
  • передача больших усилий;
  • обеспечение лучшей маневренности машины.

Изготовление конструкции достаточно сложное и дорогое – в этом главный ее минус. с таким механизмом состоит из множества соединений, периодическая регулировка которых просто необходима. В противном случае придется заменять поврежденные элементы.

Реечный рулевой механизм: устройство, принцип работы, преимущества  и недостатки

Механизм “шестерня-рейка”

Рулевой механизм реечного типа считается более современным и удобным. В отличие от предыдущего узла, это устройство применимо на транспортных средствах с независимой подвеской управляемых колес.

В реечный рулевой механизм входят следующие элементы:

  • корпус механизма;
  • передача «шестерня-рейка».

Шестерня устанавливается на рулевом валу и находится в постоянном зацеплении с рейкой. В процессе вращения рулевого колеса рейка перемещается в горизонтальной плоскости. В результате соединенные с ней тяги рулевого привода также перемещаются и приводят в движение  управляемые колеса.

Механизм «шестерня-рейка» отличается простотой конструкции и высоким КПД. К ее преимуществам также можно отнести:

  • меньшее количество шарниров и тяг;
  • компактность и невысокая цена;
  • надежность и простота конструкции.

С другой стороны, редуктор этого типа чувствителен к ударам от неровностей дороги – любой толчок от колес передастся на руль.

Винтовой редуктор

Устройство винтового редуктора

Особенностью этого механизма является соединение с помощью шариков винта и гайки. За счет чего наблюдается меньшее трение и износ элементов. Механизм состоит из следующих элементов:

  • вал рулевого колеса с винтом
  • гайка, перемещаемая по винту
  • зубчатая рейка, нарезанная на гайке
  • зубчатый сектор, с которым соединена рейка
  • рулевая сошка

Винтовой рулевой механизм применяется в автобусах, тяжелых грузовых автомобилях и в некоторых легковых автомобилях представительского класса.

https://www.youtube.com/watch?v=5rMIudOvxeY

В деталях

Внутри корпуса рулевой в ВАЗ-2105 спрятана карданная передача, которая идет к редуктору. Для того чтобы соединить вал кардан, применяется крестовина. Вся конструкция довольна надежная и ее хватает очень надолго. Все узлы и детали производятся из качественных стальных сплавов. Вот почему так мало ДТП с неполадками рулевого.

Одна из самых сложных деталей в рулевой – это редуктор. Он работает по принципу червячной передачи. Червяк известен своими зазорами и быстрым износом. Поэтому инженеры предусмотрительно оснастили корпус редуктора регулировочным болтом. Он регулирует зазоры между сошкой и червяком. Так, нет зазоров – не будет биений в колесах.

Устройство гидроусилителя руля

Основные компоненты гидроусилителя руля

Гидроусилитель руля устанавливается на любого типа. Для легковых автомобилей наибольшее распространение получил реечный механизм. В этом случае схема ГУР следующая:

  • бачок для рабочей жидкости;
  • масляный насос;
  • золотниковый распределитель;
  • гидроцилиндр;
  • соединительные шланги.

Бачок ГУР

Бачок гидроусилителя

В бачке или резервуаре для рабочей жидкости установлен фильтрующий элемент и щуп для контроля за уровнем масла. С помощью масла смазываются трущиеся пары механизмов и передается усилие от насоса к гидроцилиндру. Фильтром от грязи и металлической стружки, возникающей в процессе эксплуатации, в бачке служит сетка.

Уровень жидкости внутри бака можно проверить визуально в случае, когда резервуар сделан из полупрозрачного пластика. Если пластик непрозрачный или используется металлический бачок, уровень жидкости проверяется с помощью щупа.

В некоторых автомобилях уровень жидкости можно проверить только после кратковременной работы двигателя либо при вращении рулевого колеса несколько раз в разные стороны во время работы машины на холостом ходу.

На щупах или резервуарах сделаны специальные насечки, как для «холодного» двигателя, так и для «горячего», уже работающего в течение какого-то времени. Также необходимый уровень жидкости можно определить и с помощью отметок «Max» и «Min».

Насос гидроусилителя

Лопастной насос гидроусилителя

необходим для того, чтобы в системе поддерживалось нужное давление, а также происходила циркуляция масла. Насос устанавливается на блоке цилиндров двигателя и приводится в действие от шкива коленчатого вала при помощи приводного ремня.

Конструктивно насос может быть разных типов. Наиболее распространенными являются лопастные насосы, которые характеризуются высоким КПД и износоустойчивостью. Устройство выполнено в металлическом корпусе с вращающимся внутри него ротором с лопастями.

В процессе вращения лопасти захватывают рабочую жидкость и под давлением подают ее в распределитель и далее в гидроцилиндр.

Привод насоса осуществляется от шкива коленчатого вала, поэтому его производительность и давление зависят от количества оборотов двигателя. Для поддержания необходимого давления в ГУР используется специальный клапан. Давление, которое создает насос в системе, может достигать до 100-150 бар.

В зависимости от типа управления масляные насосы подразделяются на регулируемые и нерегулируемые:

  • регулируемые насосы поддерживают постоянное давление за счет изменения производительной части насоса;
  • постоянное давление в нерегулируемых насосах поддерживает редукционный клапан.

Редукционный клапан представляет собой пневматический или гидравлический дроссель, действующий автоматически и контролирующий уровень давления масла.

Распределитель ГУР

Схематичное устройство распределителя

Распределитель гидроусилителя устанавливается на рулевом валу или на элементах . Его назначение – направление потоков рабочей жидкости в соответствующую полость гидроцилиндра или обратно в бачок.

Главными элементами распределителя являются торсион, поворотный золотник и вал распределителя. Торсион представляет собой тонкий пружинистый металлический стержень, который закручивается под действием крутящего момента. Золотник и вал распределителя представляют собой две цилиндрические детали с каналами для жидкости, вставленные друг в друга. Золотник связан с шестерней рулевого механизма, а вал распределителя с карданным валом , то есть с рулем. Торсион одним концом закреплен на валу распределителя, другой его конец установлен в поворотный золотник.

Распределитель может быть осевым, при котором золотник перемещается поступательно, и роторным – здесь золотник вращается.

Гидроцилиндр и соединительные шланги

Гидроцилиндр встроен в рейку и состоит из поршня и штока, перемещающего рейку под действием давления жидкости.

Схема циркуляции жидкости в гидроусилителе

Соединительные шланги высокого давления обеспечивают циркуляцию масла между распределителем, гидроцилиндром и насосом.  Масло из бачка в насос и из распределителя обратно в бачок поступает по шлангам низкого давления.

Устройство и назначение

ГУР монтируется на рулевой механизм любого типа. Большая часть легковушек комплектуется устройством реечного типа. В таком случае схема ГУРа будет следующей:

  • бачок, для залива технической жидкости;
  • маслонасос;
  • золотниковый распределитель;
  • гидроцилиндр;
  • соединительные шланги.

Главная функция гидроусилителя – упрощение рулежкой для обеспечения комфорта водителя. Управлять автомобилем с ГУРом очень легко и просто. К тому же автовладельцу не нужно для совершения маневра выполнять полных 5-6 оборотов в сторону поворота. Это очень актуально в плотном городском режиме или на загруженных улицах.

Бачок

В бочок заливается техническая жидкость. Также здесь установлен специальный щуп, с помощью которого можно контролировать уровень масла, и фильтрующий элемент. Техническая жидкость смазывает трущиеся пары механизмов, с его помощью также передается усилие от насоса к гидроцилиндру. Для защиты от грязи и металлической стружки, которая образуется в процессе эксплуатации, внутри бачка установлена сетка. Если бак выполнен из полупрозрачного пластика, то проверить уровень жидкости можно визуально. В противном случае это делается с помощью щупа.

В некоторых транспортных средствах уровень жидкости в бачке ГУРа можно проверить только после того, как будет запущен силовой агрегат (на короткое время), либо после вращения рулевым колесом несколько раз в разные стороны, когда машина работает на холостом ходу. На щупе или внутри резервуара можно увидеть специальные насечки. Они отражают уровень жидкости, как для «горячего» мотора, так и для «холодного». Также здесь присутствуют отметки «Min» и «Max».

Насос

Основная функция насоса в устройстве ГУРа – это поддержание необходимого давления для циркуляции масла. Он располагается на блоке цилиндров силового агрегата. В действие насос приводится с помощью приводного ремня. Конструкции устройства могут быть разнообразные. Чаще всего в современных машинах встречаются лопастные насосы. У них достаточно высокие КПД и износоустойчивость. Само устройство представляет собой вращающийся ротор с лопастями, помещенный в металлический корпус. В процессе работы лопасти захватывают рабочую жидкость, передавая ее под давлением в распределитель. Затем она поступает в сам гидроусилитель. Масляные насосы бывают двух типов:

  • регулируемые – они поддерживают постоянное давление за счет изменения производительной части;
  • нерегулируемые – давление поддерживается с помощью редукционного клапана.

Создаваемое насосом давление в системе может достигать 100-150 бар.

Распределитель

Распределитель отвечает за направление потоков рабочей жидкости в нужную полость гидроцилиндра или обратно. Данное устройство находится на элементах рулевого привода либо на рулевом валу. Распределитель состоит из вала, поворотного золотника и торсиона. Он может быть осевым и роторным. В первом случае золотник перемещается поступательно, во втором – просто вращается.

Гидроцилиндр и соединительные шланги

Гидроцилиндр встроен напрямую в рейку. Он состоит из штока и поршня, которые перемещают рейку под действием давления жидкости. Для циркуляции масла между элементами используются специальные соединительные шланги низкого давления.

Работа гидроусилителя рулевого привода автомобиля ЗИЛ-4331:

a — нейтральное положение; б — перемещение золотника вправо; в — перемещение золотника влево; 1 и 7 — перепускные клапаны; 2 — сапун; 3 и 4 — сетчатые фильтры; 5 — коллектор; 6 — насос; 8 — предохранительный клапан; 9 и 10 — демпфирующие отверстия; 11 — калиброванное отверстие; 12 — шариковый клапан; 13 — реактивный плунжер; 14 — золотник; 15 — винт механизма рулевого управления; 16 — вал сошки; 17 — картер механизма рулевого управления.

Если водитель перестает поворачивать рулевое колесо, то прекращается и поворот управляемых колес, так как винт перестает вращаться и поступающая в картер механизма рулевого управления жидкость перемешает поршень-рейку с винтом и золотником в исходное среднее положение, при котором прекращается действие жидкости на поршень-рейку.В работе гидроусилителей автомобилей марок «ЗИЛ» и «КамАЗ» много общего, но конструкция гидроусилителя автомобилей марки «КамАЗ» имеет некоторые особенности. Распределитель расположен впереди углового редуктора. В центральном отверстии распределителя размещен золотник, вокруг которого в трех сквозных отверстиях расположено по два цилиндра с центрирующей пружиной между ними, а в трех глухих отверстиях расположено по одному плунжеру с пружиной. Наличие трех плунжеров в глухих отверстиях объясняется следующим. Жидкость, находящаяся в корпусе углового редуктора, действует на три торца реактивных плунжеров, находящихся в сквозных отверстиях, а также на кромку сечения винта по месту его уплотнения, а в полости слева под передней крышкой действуют лишь на торцы трех плунжеров. Чтобы обеспечить одинаковое реактивное усилие на рулевом колесе от давления жидкости при повороте как направо, так и налево со стороны углового редуктора расположены три дополнительных плунжера, общая площадь которых равна площади кромки сечения винта.В одном из плунжеров встроен обратный клапан, который при отказе гидросистемы соединяет между собой магистрали высокого и низкого давления, обеспечивая работу рулевого управления без усилителя. Предохранительный клапан соединяет магистрали нагнетания и слива при давлении жидкости свыше 8 МПа, предохраняя насос от перегрева, а детали от перегрузок. Размещение предохранительного клапана в отдельной бобышке облегчает его регулировку и ремонт.Отдельный гидроусилитель автомобиля МАЗ. Распределитель крепится к корпусу шаровых шарниров и силового цилиндра. Внутри корпуса распределителя имеются три кольцевых канавки: две крайние соединены между собой каналом и с магистралью нагнетания, средняя сообщает магистраль слива с бачком насоса. Две кольцевые канавки золотника соединяются каналами (Одна — с левой, другая — с правой стороны) с реактивными камерами, представляющими собой замкнутую полость. Шаровые пальцы сошки и продольной рулевой тяги закреплены в корпусе шаровых шарниров. Этот корпус фланцем скреплен с корпусом золотника. Шаровые пальцы зажаты пружинами между сферическими сухарями пробкой и регулировочной гайкой. Сухари удерживаются от вращения штифтами, а шаровые пальцы в сухарях могут поворачиваться в некоторых пределах. Внутри корпуса шаровых шарниров в осевом направлении может перемещаться стакан с закрепленным в нем шаровым пальцем сошки. Со стаканом перемещается и золотник, жестко соединенный с ним болтами. На корпус шаровых шарниров навернут силовой цилиндр, в котором помещен поршень со штоком. С одной стороны полость цилиндра закрыта пробкой, а с другой — крышкой. На конце штока имеется головка для его крепления в кронштейне рамы. Полости цилиндра, разделенные поршнем, соединены трубопроводами с каналами в корпусе распределителя, выходящими в полость между кольцевыми проточками. 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector