Коленчатый вал двигателя: его строение и назначение

Механическая обработка коленчатых валов

Сложность конструктивной формы коленчатого вала, его недостаточная жесткость, высокие требования к точности обрабатываемых поверхностей вызывают особые требования к выбору методов базирования, закрепления и обработки вала, а также последовательности, сочетания операций и выбору оборудования. Основными базами коленчатого вала являются опорные поверхности коренных шеек. Однако далеко не на всех операциях обработки можно использовать их в качестве технологических. Поэтому в некоторых случаях технологическими базами выбирают поверхности центровых отверстий. В связи со сравнительно небольшой жесткостью вала на ряде операций при обработке его в центрах в качестве дополнительных технологических баз используют наружные поверхности предварительно обработанных шеек.

При обработке шатунных шеек, которые в соответствии с требованиями технических условий должны иметь необходимую угловую координацию, опорной технологической базой являются специально фрезерованные площадки на щеках. По окончании изготовления коленчатые валы обычно подвергают динамической балансировке в сборе с маховиком (автомобильные двигатели).

В большинстве случаев коленчатые валы предусматривают возможность их перешлифовки на ремонтный размер (обычно 4-6 размеров, ранее было до 8). В этом случае коленвалы шлифуют вращающимся наждачным кругом, причём вал проворачивается вокруг осей базирования. Конечно, эти оси для коренных и шатунных шеек не совпадают, что требует перестановки. При перешлифовке требуется соблюсти межцентровое состояние, и согласно инструкции, валы после шлифовки подлежат повторной динамической балансировке. Чаще всего это не выполняют, потому отремонтированные двигатели часто дают большую вибрацию.

При шлифовании важно соблюсти форму галтелей, и ни в коем случае не прижечь их. Неправильная обработка галтелей часто приводит к разрушению коленчатого вала.

Элементы движения. Шатун

Шатун передает усилие движущих сил цилиндра на коленчатый вал. Он всегда нагружен осевой силой, которая определяет напряжения сжатия, и в конце такта выпуска 4-тактных ДВС — растяжения в теле шатуна. Кроме того, при движении шатуна возникают силы инерции, которые вызывают незначительный изгиб его стержня. При наличии значительных по величине осевых сил этот изгиб может явиться причиной поломки шатуна. Поэтому к конструкции шатуна предъявляется требование не только механической прочности, но и достаточной продольной жесткости.

Рис. 6 Шатун современного тронкового дизеля

Шатун состоит из нижней головки 1, стержня (или тела) 2 и верхней головки 3. У судовых дизелей шатуны изготавливаются исключительно из стали путем штамповки (для двигателей малой и средней мощности), отливки или поковки — для мощных судовых двигателей. Как правило, при штамповке тело шатуна имеет в сечении двутавр. У мощных двигателей тело шатуна имеет цилиндрическую форму.

У крейцкопфных двигателей как верхняя, так и нижняя головки шатуна — разъемные. В двигателях старых конструкций нижняя головка была отъемная, так называемая “морского” типа. В такой конструкции есть возможность регулировать объем камеры сжатия прокладками под подпятник шатуна. Верхняя головка может быть «вильчатого» или “безвильчатого” (рис. 5) типа. В большинстве случаев головной и мотылевой подшипники шатуна имеют вкладыши, залитые белым металлом. Однако встречаются конструкции с заливкой белого металла непосредственно в крышку головного и мотылевого подшипников (двигатели B&W старой конструкции). Для смазки подшипников предусмотрено сверление в теле шатуна.

В 2-тактных дизелях головной подшипник традиционно считается наименее надежным элементом, что определяется трудностями доступа смазки к трущимся поверхностям. Силы веса выше расположенных элементов движения и давление газов в цилиндреХарактеристика процесса сгорания топлива в цилиндре дизеля по индикаторной диаграмме постоянно прижимают цапфы поперечины к поверхности заливки подшипника, зазор отсутствует, что препятствует поступлению масла. Для решения этого вопроса обычно используется один из способов: 1) при доводке дизеля тщательно подбирают массы деталей и параметры рабочего процесса с тем, чтобы при работе дизеля в процессе сжатия рабочего тела сила инерции на каком-то угле поворота коленчатого вала превысили силу от давления сжатия, чтобы в нижней части головного подшипника появлялся зазор для доступа масла; 2) цапфы головного подшипника состоят из 2-ух частей, имеющих незначительный эксцентриситет, позволяющий доступ смазки к трущимся поверхностям при качательном движении шатуна; 3) в двигателях MAN старой конструкции к поперечине крейцкопфа крепился поршневой насос с приводом за счет качательного движения шатуна — для подачи смазки под давлением к головному подшипнику. В современных двигателях такое решение не применяется.

Что такое балансирные валы

ДВС — это устройство сложной конструкции, основанной на преобразовании одной энергии в другую. Чем сложнее устройство, в данном случае, чем больше цилиндров имеет двигатель, тем сильнее создаются вибрации и колебания отдельных деталей, и двигателя целиком.

Цилиндры в ДВС располагаются по-разному:

  1. Рядная схема двигателя. Это такая, при которой оси цилиндров находятся в одной плоскости.
  2. Оппозитная схема. Оси цилиндров на противоположной стороне, то есть через 180 градусов. 
  3. V-образная схема ДВС. Оси цилиндров в В-образных моторах располагаются в разных плоскостях.

Во всех двигателях существуют два вида сил:

  • Уравновешенные. Уравновешенные силы — это сила давления, сила трения.
  • Неуравновешенные. Неуравновешенные силы — это вес силового привода, сила инерции (то есть обратная сила).

В связи с тем, что двигатели не могут работать без вибрации, конструкторами была придумана деталь, которая сводит к минимуму повышенные значения вибрации и колебания.

Балансирный вал представляет собой цилиндрический стержень с имеющимися на нем пазами. Уравновешивающий вал гасит силы инерции второго порядка. Силы второго порядка в двигателе внутреннего сгорания не уравновешиваются путем установки дополнительных грузов на щека коленчатого вала. К силам первого порядка относится масса кривошипа, радиус его движения, угловая скорость и угол поворота. К силам второго порядка в ДВС относятся лямбда, то есть отношение радиуса кривошипа к длине шатуна.

Виды

Что же касается разновидностей распределительных валов двигателя, то их классифицируют в зависимости от расположения и количества на двигателе внутреннего сгорания. Распредвал является ключевым компонентом газораспределительного механизма и всего двигателя. В зависимости от того, как располагается этот элемент, выделяют 2 варианта:

  • с нижним расположением;
  • с верхним размещением.

Отсюда и разделение моторов внутреннего сгорания с верхним и нижним распредвалов. Когда-то нижнее расположение считалось лучшим и самым оптимальным для автомобильных двигателей. Но они были актуальными до 50-х годов прошлого века. Именно тогда все моторы создавались нижнеклапанного типа. Потому и распределительный вал находился снизу силовой установки. Тарелки клапанов размещались так, что они смотрели вверх. Подобная схема изготовления моторов объяснялась тем, что это проще и дешевле в плане производства. При этом страдал фактор производительности, о чём инженеры догадались несколько позже, когда появился новый вариант размещения распределительного вала. Учитывая объективные недостатки, от старой схемы с нижним расположением постепенно начали отказываться. Ему на смену пришла уже классическая и привычная схема с головкой блока цилиндров и установленными в ней клапанами и распределительным валом. Теперь клапана начали открываться вниз, а схема получила верхнее расположение распредвала.

Хотя нельзя отрицать тот факт, что даже на некоторых современных двигателях продолжают использовать нижневальную систему, где клапана располагаются сверху. Только она значительно усовершенствовалась по сравнению с предшественниками, а потому имеет полное право на существование при грамотной реализации. Двигатели с нижним расположением распределительного вала отличаются тем, что здесь дополнительно предусматривается установка специальных штанг. Они применяются для компенсации расстояния, которое имеется между кулачками распредвала и толкателями клапанов, находящихся в головках цилиндров. Даже несмотря на наличие современных нижневальных двигателей внутреннего сгорания, они считаются устаревшей схемой, а потому большинство автопроизводителей уже давно не используют её в производстве своих силовых агрегатов. Такие методы размещения требуют дополнительных мер, они характеризуются внушительными технологическими ограничениями, не позволяют развивать высокие обороты.

Количество валов

Отдельно рассматриваются виды двигателей в зависимости от того, сколько распределительных валов предусмотрено в их конструкции. Если заглянуть в подкапотное пространство современного силового агрегата, можно встретить несколько вариантов:

  • Газораспределительные механизмы (ГРМ), оснащённые только одним распредвалом;
  • ГРМ, конструкция которых включает пару распределительных валов;
  • Двигатели, где используется более 2 распредвалов.

Именно первые два типа двигателей внутреннего сгорания, где газораспределительный механизм включает 1 или 2 распредвала, являются наиболее популярными и распространёнными. Зачастую количество распредвалов зависит напрямую от количества клапанов на цилиндр. Если у двигателя конструкция предусматривает от 3 и более клапанов, которые приходятся на 1 цилиндр, то здесь скорее всего будет использовать двухраспредвальная схема. Несмотря на наличие таких правил и закономерностей, исключения встречаются всегда и везде. Компания Mitsubishi из Японии выпускает модель Lancer, под капотом которого может размещаться рядный четырёхцилиндровый двигатель, именуемый как 4G18. На каждом цилиндре здесь сразу 4 клапана, но распределительный вал используется всего один. А если взять в качестве примера модель гиперкара Veyron производства компании Bugatti, то есть конструкторы предусмотрели сразу 4 распределительных вала на двигателе.

Есть и другие примеры несколько иного подхода к использованию распредвала и его конструкции. Японские инженеры из компании Honda для своей системы под названием VTEC придумали оригинальный ход. Здесь сразу несколько кулачков отвечают за регулировку высоты поднятия только одного клапана. То есть на каждый из клапанов приходится по несколько рабочих кулачков. Инженеры постоянно работают над усовершенствованием систем газораспределения, повышают эффективность работы ГРМ, меняют фазы. Всё это позволяет повысить производительность двигателя, поднять его максимальную скорость, обеспечить лучшее ускорение. При этом не забывают о вопросах экономии топлива.

Материалы изготовления коленчатого вала

Коленчатые валы двигателя шести- и восьмицилиндровых четырехтакт­ных двигателей изготовляются из марганцовистой стали 50Г, а двенадцати цилиндровых — из Хромованадиевой стали 60ХФА. Коренные и шатунные шейки, а также шейки под уплотнительные манжеты подвергаются поверхностной закалке с нагревом ТВЧ. Сложная форма кованых коленчатых валов влечет за собой необ­ходимость сравнительно большого съема металла при механиче­ской обработке. Металл снимается не только на шейках, но и на щеках. Сравнительно большие припуски имеют коленчатые валы У-образных двигателей, когда шейки расположены в не­скольких плоскостях. Кроме того, стремление использовать штамп как можно дольше также приводит к увеличению припу­сков. Согласно исходной технологии токарная обработка корен­ных шеек, переднего и заднего Концов коленчатого вала прово­дилась одновременно на многорезцовых станках мод. МК-840, а шатунных шеек на многорезцовых станках мод. МК-8212. При этом суммарная ширина режущих кромок одновременно рабо­тающих резцов на станке мод. МК-840 для шестицилиндровых валов составляла 440 мм, для восми-цилиндровых 490 мм, а на станке мод. МК-8212 — соответственно 240 и 320 мм.

Наличие значительных сил резания и ударных нагрузок при обработке щек в сочетании с перераспределением внутренних напряжений в материале вала после снятия поверхностного слоя штампованной заготовки приводило к короблению вала на пред­варительных операциях его изготовления. Нагрев шеек при закалке ТВЧ также вызывал дополнительное коробление вала. При этом суммарные деформации вала достигали 1,5—2 мм. I С целью их устранения технологическим процессом предусма­тривалась правка вала, которая производилась после обтачи­вания коренных и шатунных шеек и после термической обработки. Процесс правки заключался в неоднократном прогибе вала с устра­нением биения до допустимых величин.

Как правильно выбрать, отремонтировать и поменять коленчатый вал

Коленвал в процессе работы двигателя подвергается высоким скручивающим и изгибающим механическим нагрузкам, а также интенсивному износу, тепловым нагрузкам и воздействию агрессивных сред (отработавших газов, загрязнений масла и т.д.). Поэтому со временем данная деталь изнашивается, деформируется и теряет свои качества, а в отдельных случаях износ и деформации могут приводить к полной потере валом возможности нормально выполнять свои функции. В этом случае вал должен быть демонтирован с мотора, подвергнут дефектации, и в случае надобности отремонтирован или заменен.

На замену следует использовать только ту деталь, которая была установлена в двигатель производителем, либо ее допустимый аналог (например, с другой модификации двигателя). Также вместе с валом необходимо приобретать комплект новых вкладышей (шатунных и коренных) и сальников.

Замена коленвала должна выполняться в соответствии с инструкцией по ремонту данного конкретного двигателя. Демонтаж вала выполняется на снятом с автомобиля моторе, так как доступ к детали возможен только снизу. Для снятия вала необходимо демонтировать крышки шатунов и коренных подшипников, маховик, упорные кольца, затем вал вынимается из блока и подвергается осмотру. Если на детали обнаружены трещины и сколы, а также глубокие царапины и риски на прилегающих к сальникам поверхностям, то она подлежит замене. Новый коленвал должен устанавливаться и при недопустимом износе шатунных и коренных шеек (когда выбраны все ремонтные размеры вкладышей), и при недопустимых деформациях в одной или обеих плоскостях.

Если коленвал подвергается ремонту, то предварительно его необходимо очистить от загрязнений и промыть (особенно тщательно промыть сверления в шейках, так как в них скапливается грязь), а затем выполнять те или иные операции. Если же устанавливается новый коленвал, то должны использоваться новые вкладыши и сальники.

После замены коленчатого вала двигатель нуждается в обкатке, обычно для обкатки достаточно 2000-2500 км пробега. Во время обкатки двигатель должен работать на щадящих режимах без резкого увеличения и сброса оборотов. В дальнейшем вал нуждается в регламентном обслуживании — осмотре, очистке сверлений, замене вкладышей и т.д. При верном выборе и замене коленвала, а также при соблюдении рекомендаций по обкатке двигатель после ремонта будет работать надежно на всех режимах.

Как устроен коленчатый вал?

Рабочие компоненты коленвала:

  • Коренная шейка – валовая опора, которая служит осью вращения самого вала. Она лежит в подшипнике, который встроен в картер.
  • Шатунные шейки – опоры, связанные с поршневыми шатунами. Во время работы они смещаются относительно оси вала по круговой траектории.
  • Щёки – вспомогательные детали, связывающие шатунные и коренные шейки. Они также предотвращают разрушение вала из-за резонансной нагрузки.
  • Хвостовик – задняя часть, соединённая с шестерной отбора или маховиком для передачи мощности на движение.
  • Носок – передняя часть вала, которая посредством шкива или зубчатого колеса передаёт мощность приводу газораспределительного блока и других вспомогательных механизмов.
  • Противовесы – детали, необходимые для распределения нагрузки и уравновешивания массы шатунов и поршней.

Для уплотнения носка и хвостовика используются защитные сальники. Это предотвращает просачивание масла в местах выхода частей маховика за границы блока цилиндров. Вращательное движение обеспечивается тонкими стальными подшипниками скольжения. Чтобы ось вращения вала не смещалась, на одну из коренных шеек ставится упорный подшипник.

Во время работы самые большие напряжения концентрируются в месте соединения шеек и щёк. Для разгрузки его делают с галтелью – полукруглым переходом с промежуточным технологическим поясом. По причине экстремальных нагрузок в месте перехода щёк в шейки в своё время производители отказались от составных коленвалов, детали которых соединялись крепежом.

Для чего нужен датчик коленвала?

Датчик положения коленчатого вала (ДПКВ) используется в автомобилях, которые оборудованы системами электронного управления мотором. Поскольку вращение вала сказывается на работе многих функциональных блоков и систем, своевременная подача топлива в цилиндры ДВС может улучшить ездовые характеристики.

Датчик коленвала как раз отвечает за синхронизацию рабочих процессов. В различных моделях автомобилей его использование улучшает синхронизацию зажигания или топливных форсунок. Прибор передаёт на электронный блок управления данные о положении коленвала, направлении и частоте вращения.

Встречаются датчики следующих видов:

  • Магнитные (индуктивного типа). Сигнал на ЭБУ формируется в момент прохождения синхронизационной метки через магнитное поле, которое формируется вокруг датчика. Система не требует отдельного питания, и может параллельно работать как датчик скорости.
  • Датчики Холла (работают на эффекте Холла). Ток в приборе начинает движение при приближении изменяющегося магнитного поля. Перекрытие магнитного поля реализуется специальным синхронизирующим диском, зубья которого взаимодействуют с магнитным полем ДПКВ. Дополнительная функция – датчик распределения зажигания.
  • Оптические. В данном случае для синхронизации также используется зубчатый диск. Он перекрывает оптический поток, проходящий между приёмником и светодиодом. Приёмник фиксирует прерывания светового потока и передаёт в электронный блок управления импульс напряжения, соответствующий параметрам вращения вала.

Датчик коленвала устанавливается внутри корпуса двигателя, как и прочие датчики управления. Для его встраивания используется специальный кронштейн, расположенный возле приводного шкива генератора. Внешне он отличается от датчиков другого назначения наличием проводка длиной 55-70 см с особым разъёмом, который соединяет устройство с системой электронного управления.

Процесс обслуживания

Как и любая деталь, коленчатый вал нуждается в специальном уходе. Для осмотра и ремонта, необходимо его снять. Обычно это требуется во время капитального ремонта, к примеру, после гидроудара, во время которого, коленвал может повести.

Чтобы снять коленвал, необходимо демонтировать двигатель и его элементы. Перевернув ДВС, отмечают расположение крышек коренных подшипников, затем их снимают, приподнимают коленвал и отсоединяют заднее уплотнительное кольцо. После этого снимают вкладыши с блоков цилиндров и крышек. Таким образом, мы имеем отсоединенный коленчатый вал.

Для его проверки необходимо промыть бензином и просушить деталь. Производится осмотр на предмет трещин, сколов, вмятин. Если таковые обнаружены — деталь подлежит замене.

Открутив пробки, можно прочистить все масляные каналы. Шатунные шлейки шлифуются и полируются, снова прочищаются каналы для масла. Вкладыши подшипников, подшипник носовой части, маховик, сальник и резиновые уплотнители при обнаружении дефектов также необходимо заменить.

После этого производится сборка двигателя в порядке, обратном разбору, предварительно смазав все детали. Также необходимо убедиться в плавности скольжения и вращения детали.

Коленчатый вал должен выдерживать высокие нагрузки

Сегодня в современных автомобилях в двигателях используется коленвал, с каждой стороны которого находится подшипник. Со временем подшипники изнашиваются и между ними и поверхностью коленвала появляется люфт, что приводит к износу коленвала. 

К счастью, современная конструкция двигателя способна долгое время выдерживать большие нагрузки. В том числе способны выдерживать нагрузку и современные коленчатые валы. Например, в дизельном современном двигателе каждый ход шатуна испытывает от воспламенения топлива нагрузку в 10 000 кг, которая, естественно, передается на коленвал. 

Итак, на короткое время в одно мгновенье на шатуне присутствует сила, эквивалентная десяти тоннам, которая воздействует на коленвал. И это мы говорим только об одном шатуне. Вы представляете, какую нагрузку получает коленвал в восьмицилиндровом моторе? 

И это еще не все. В зависимости от конструкции двигателя коленчатые валы также подвержены вибрациям. Поэтому многие автопроизводители стараются сделать коленчатые валы достаточно прочными и долговечными. Например, коленвал может быть изготовлен из высококачественной стали. Особенно для мощных турбированных высокооборотистых дизельных двигателей.

Для атмосферного (нетурбированного) бензинового двигателя коленвал может быть уже не столь прочен. Поэтому производители часто еще недавно многие коленчатые валы изготавливали из чугуна. Сегодня же в мире наблюдается тенденция по снижению веса автомобиля. В первую очередь двигателя.

Коленчатый вал это конструкция, короче много раз изогнутая железяка

Коленвал представляет собой расположенные на одной оси коренные шейки, соединенные щеками и шатунные шейки, количество которых определяется числом цилиндров. При помощи шатунов шейки коленвала соединены с поршнями.

В зависимости от того как расположены коренные шейки, коленвал бывает:

  • полноопорный – если коренные шейки располагаются по обе стороны от шатунной шейки;
  • неполноопорный – если коренные шейки располагаются только с одной стороны от шатунной шейки.

Большинство современных автомобильных двигателей оснащены полноопорными коленчатыми валами.

Основные элементы КВ

К основным элементам относятся:

  • Коренная шейка – это главная часть узла, которая находится на коренных подшипниках (вкладышах), расположенных в картере;
  • Шатунная шейка – соединяет коленчатый вал с шатунами. Смазываются шатунные механизмы через специальные масляные каналы. Шатунные шейки смещены в стороны;
  • Щеки коленвала – соединяют коренные и шатунные шейки;
  • Противовесы – уравновешивают вес поршней и шатунов;
  • Передняя, фронтальная часть или носок – элемент механизма, оснащенный зубчатым колесом (шкивом) и шестерней, а в отдельных случаях еще и гасителем колебаний. Он контролирует мощность привода газораспределительного механизма (ГРМ) и других устройств;
  • Задняя часть (хвостовик) – элемент механизма, соединенный с маховиком с помощью маслоотражающего гребня и маслосгонной резьбы, выполняет отбор мощности.

Тыльная и фронтальная стороны коленчатого вала уплотняются защитными сальниками. Они не допускают протекания масла в местах, где маховик выходит за пределы блока цилиндров.

Свободное вращение коленчатого вала гарантируют подшипники скольжения, которые представляют собой тончайшие стальные вкладыши, со специальным антифрикционным слоем.

Чтобы не допустить осевое смещение, существует упорный подшипник, устанавливаемый на коренную шейку (крайнюю или среднюю).

Материалы для изготовления

Коленчатый вал это трудяга, который подвергается действию сильных, быстроизменяющихся нагрузок. Показатели его надёжности определяются конструктивными особенностями и материалами, из которого он сделан.

У этого элемента двигателя, обычно, цельная структура. Так что материалы для его изготовления должны использоваться максимально прочные, потому что от этого зависит стабильная работа системы. Лучшие материалы ‒ углеродистая и легированная сталь и высокопрочный чугун.

Коленчатые валы изготавливают методом литья, ковки из стали, а затем их вытачивают. Заготовки производят горячей штамповкой или литьем.

Материал и технология производства зависит от класса и типа автомобиля.

  1. Для серийных моделей коленвалы производятся методом литья из чугуна. Это уменьшает себестоимость.
  2. Для дорогих спортивных моделей берут кованные стальные коленвалы. Такой вариант обладает рядом преимуществ по размерам, весу и показателям прочности, и все чаще используются в автомобилестроении.
  3. Для супер дорогих двигателей изделие вытачивается из цельных стальных болванок. При этом приличная часть материала остается в отходах.

Конструктивные особенности

Теперь вы знаете, что кроме серийных, есть и спортивные коленвалы.

Они дают возможность ускорить ход поршня в крайней точке сжатия, благодаря специальной форме шатунных шеек. У стандартного вала они круглые, а у спортивного ‒ немного вытянутые, за счет этого характеристики двигателя изменяются.

Поздравляю вас, господа. Теперь вы в курсе, что коленчатый вал это не только тяжелая железяка, но и незаменимая деталь, от которой зависит комфортная езда, ресурс двигателя и его узлов.

А ещё она обеспечивает многие устройств автомобиля крутящим моментом: трансмиссию, генератор, карданы, и так далее до колес.

Конечно рассказывать об этом своей любимой девушке не обязательно, а вот друзьям автомобилистам через социальные сети сообщите. Пусть тоже читают наш блог – будет много интересного.

И до скорой встречи.

Шестерня коленвала и ее значение

Когда картер полностью собран, снаружи устанавливается сальник, а затем – шестерня коленвала. Необходима она для того, чтобы через зубчатый ремень или непосредственно через шестерню распределительного вала происходила его синхронизация с работой коленчатого вала. В свою очередь распредвал посредством установленных на нем кулачков с определенной периодичностью открывает и закрывает клапаны газораспределительного механизма (ГРМ). Это необходимо для своевременной подачи в цилиндры ДВС топлива и отвода газов после его сгорания.

Если используется ременная передача, она попутно охватывает шкив насоса охлаждающей жидкости. К слову, натяжение ремня должно быть строго отрегулировано, для этого предусмотрен специальный ролик. Если у шестерни вдруг обнаружится люфт, проверьте, насколько надежно сидит в своем гнезде шпонка коленвала. Даже после того, как последняя будет вынута, шестерня при натянутом ремне должна сидеть достаточно плотно. Если люфт продолжается, значит, произошла деформация посадочного места, и не остается ничего другого, кроме как поменять вал. То же самое, если разбивает гнездо под шпонку.

Главная →

Устройство → Двигатель → Коленвал (коленчатый вал) →

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector