Общие сведения и классификация зубчатых передач

Диаметры окружностей

Рассмотрение геометрии зубчатых пар невозможно без определения диаметров. На каждой детали их выделяется несколько. Широкое распространение имеет диаметр окружности по выступам, иногда называемый диаметром вершин. Он определяет максимальные габариты диска колеса. Его противоположностью считается диаметр окружности впадин. Разность этих величин, поделенная пополам, дает полную длину зуба. Но этот параметр в чистом виде не используется. При расчетах принято выделять высоту головки и ножки зуба. Граница, отделяющая два этих понятия, называется делительной окружностью зубчатого колеса. Диаметр данной окружности выполняет функцию опорного параметра при выполнении расчетов геометрии, так как именно по ней определяется окружной шаг и модуль зацепления. Еще один диаметральный параметр, называемый основной окружностью, описывает теоретическую кривую, которая является базой при построении эвольвенты. Диаметр основной окружности используется для построения конкретного профиля зуба.

Конструкция зубчатого колеса

Несмотря на кажущуюся простоту, в технике принято выделять несколько отдельных частей зубчатого колеса. Как и любое другое колесо, зубчатый вариант в своей основе имеет диск необходимого диаметра. Основной частью является обод, на боковой или торцевой поверхности которого выполнены зубья. Все вместе они образуют так называемый венец зубчатого колеса. Геометрия зубьев различна у разных типов зубчатой передачи. Сам зуб условно разбивается на несколько частей. Наружная часть называется вершиной. Прилегающие к ней боковые поверхности носят название головки зуба. Внутренняя часть именуется ножкой зуба. Две соседние ножки образуют впадину зубчатого колеса.

Для крепления на валу механизма в центре диска изготавливается ступица со сквозным отверстием. Форма отверстия зависит от геометрии сечения вала и может быть цилиндрической, квадратной или многоугольной. При использовании цилиндрических валов, в ступице обычно выполняют шпоночный паз.

С целью уменьшения веса толщина диска колеса выполняется обычно меньше, чем толщина ступицы или обода. Также для этого в теле диска могут присутствовать окна разнообразной формы.

Материал цепей

Все детали цепного механизма должны хорошо сопротивляться повышенным статическим и ударным нагрузкам, и быть достаточно износостойкими. Боковые пластины делают из высокопрочных сплавов, они работают в основном на растяжение. Оси, втулки, ролики, вкладыши и призматические элементы делаются из высокопрочных и хорошо цементируемых сплавов. Цементация проводится на глубину до 1,5 мм и обеспечивает хорошую стойкость к износу трением. После этого детали подвергаются термообработке закаливанием. Твердость доводится до 65 ед.

Зубчатые колеса делают из легированных сталей, также подвергаемых закалке до 60 ед.

Для передач малой скорости и мощности, при умеренных параметрах разгона и торможения применяют ковкие чугуны.

Для снижения шума и повышения плавности хода при ограниченных мощностях используют шестеренки из текстолита или прочных пластмасс. Применяют также наплавку металлических и нанесение полимерных покрытий на детали и узлы, работающие в агрессивных средах.

Параметры зубчатой передачи

Для того чтобы шестерни входили в зацепление и эффективно передавали движение, необходимо, чтобы зубья точно совпадали между собой по профилю. Регламентированы основные параметры, используемые при расчете:

  • Диаметр начальной окружности.
  • Шаг зацепления — расстояние между соседними зубцами, определенное вдоль линии начальной окружности.
  • Модуль. – Отношение шага к константе π. Шестерни с равным модулем всегда входят в зацепление, независимо от количества зубцов. Стандартом предписывается допустимый ряд значение модулей. Через модуль выражаются все основные параметры шестерни.
  • Высота зуба.

Параметры зубчатого движения

Важными параметрами также являются высота головки и основания зуба, диаметр окружности выступов, угол контура и другие.

Стандарты

Нормируются ли зубчатые передачи? ГОСТ, действующий в настоящее время, определяет допустимые отклонения для готовых колесных пар. Точность заготовок устанавливается в зависимости от технологических особенностей и может регулироваться для каждой отрасли или завода-изготовителя отдельно.

Для каждого вида зубчатых передач существуют нормы взаимозаменяемости. Отдельные стандарты утратили актуальность вообще, некоторые действуют лишь в отдельных регионах. Тем не менее, нормы, разработанные ранее, используются для общей терминологии, обозначений, порядка разработки документации и построения чертежей.

ГОСТы регулируют параметры расчетов геометрии зубчатых колесных пар, их модули, исходные контуры, степени точности и виды сопряжений. Другие нормативы устанавливают стандарты на отдельные элементы деталей, а третьи – на уже готовые узлы и агрегаты.

Основные геометрические параметры

Построение кинематической схемы, технические характеристики, способы обработки отдельных деталей этих механизмов задаются геометрической формой отдельных элементов. Основными геометрическими параметрами, которые рассчитываются при проектировании являются:

  • углы делительных конусов (каждого колеса или шестерёнки);
  • диаметры всех элементов (обоих валов, ведущих и ведомых шестерён);
  • внешний окружной модуль шестерни;
  • расстояние от вершины конуса до его образующей (называется делительное расстояние);
  • расстояние между осей;
  • радиальный зазор применяемых подшипников;
  • делительный диаметр (он определяет величину зуба шестерёнки);
  • диаметр углублений и верхней части зубьев.

Для удобства проведения расчетов и понимания механизма зацепления вводят три вида торцовых сечений. Это сечения во внешней, внутренней и средней части каждого зуба.

Уменьшение толщины зубьев по направлению к вершине приводит к созданию надежного зацепления во время движения. Угол наклона по направлению к вершине определяет параметры, задаваемые при обработке.

Под линией зубьев понимают пересечение двух прямых. Одна образована боковой поверхностью зуба, вторая является краем делительной конической поверхности.

Для улучшения эксплуатационных характеристик — повышения износостойкости, сопротивления при контакте, уменьшение заедания и лучшей передачи коническим зубчатым колёсам энергии вращения используют метод выравнивания коэффициентов удельного скольжения.

С этой целью колесо и шестерню стараются изготовить с одинаковыми параметрами смещения, но с разными знаками. Например, для шестерни задают параметр со знаком плюс, а для колеса со знаком минус.

Основные геометрические соотношения задаются на этапе разработки всего механизма конической передачи качество передачи. Геометрические параметры рассчитываются на основании известных соотношений.

Зубчатые передачи с двумя шестернями

В простейшем примере зубчатой ​​передачи две шестерни. «Входная шестерня» (также известная как ведущая шестерня) передает мощность на «ведомую шестерню» (также известную как ведомая шестерня). Входная шестерня обычно подключается к источнику питания, например к двигателю или двигателю. В таком примере выходной крутящий момент и скорость вращения выходной (ведомой) шестерни зависят от соотношения размеров двух шестерен.

Формула

Зубья на шестернях сконструированы таким образом, чтобы шестерни могли плавно катиться друг по другу (без проскальзывания и заедания). Чтобы две шестерни могли плавно катиться друг по другу, они должны быть спроектированы так, чтобы скорость в точке соприкосновения двух делительных кругов (обозначенных буквой v ) была одинаковой для каждой шестерни.

Математически, если входная шестерня G A имеет радиус r A и угловую скорость и входит в зацепление с выходной шестерней G B с радиусом r B и угловой скоростью , то:
ωА{\ displaystyle \ omega _ {A} \!}ωB{\ displaystyle \ omega _ {B} \!}

vзнак равнорАωАзнак равнорBωB,{\ displaystyle v = r_ {A} \ omega _ {A} = r_ {B} \ omega _ {B}, \!}

Число зубцов на шестерне пропорционально радиусу его делительной окружности, что означает, что отношения угловых скоростей шестерен, радиусов и числа зубьев равны. Где N A — количество зубьев входной шестерни, а N B — количество зубьев выходной шестерни, формируется следующее уравнение:

ωАωBзнак равнорBрАзнак равноNBNА.{\ displaystyle {\ frac {\ omega _ {A}} {\ omega _ {B}}} = {\ frac {r_ {B}} {r_ {A}}} = {\ frac {N_ {B}} {N_ {A}}}.}

Это показывает, что простая зубчатая передача с двумя передачами имеет передаточное число R, определяемое следующим образом:

рзнак равноωАωBзнак равноNBNА.{\ displaystyle R = {\ frac {\ omega _ {A}} {\ omega _ {B}}} = {\ frac {N_ {B}} {N_ {A}}}.}

Это уравнение показывает , что , если число зубов на ведомой шестерне G B больше , чем число зубцов на входной шестерне G A , то вход шестерня G должна вращаться быстрее , чем выходная шестерня G B .

Форма зуба

Зацепления различаются по профилю и типу зубьев. По форме зуба различают эвольвентные, круговые и циклоидальные зацепления. Наиболее часто используемыми являются эвольвентные зацепления. Они имеют технологическое превосходство. Нарезка зубьев может производиться простым реечным инструментом. Эти зацепления характеризуются постоянным передаточным отношением, не зависящим от смещения межцентрового расстояния. Но при больших мощностях проявляются недостатки, связанные с небольшим пятном контакта в двух выпуклых поверхностях зубьев. Это может приводить к поверхностным разрушениям и выкрашиванию материала поверхностей.

В круговых зацеплениях выпуклые зубья шестерни сцепляются с вогнутыми колесами и пятно контакта значительно увеличивается. Недостатком этих передач является то, что появляется трение в колёсных парах. Виды зубчатых колёс:

  1. Прямозубые. Это наиболее часто используемый вид колёсных пар. Контактная линия у них параллельна оси вала. Прямозубые колёса сравнительно дешевы, но максимальный передаваемый момент у них меньше, чем у косозубых и шевронных колёс.
  2. Косозубые. Рекомендуется применять при больших частотах вращения, они обеспечивают более плавный ход и уменьшение шума. Недостатком является повышенная нагрузка на подшипники из-за возникновения осевых усилий.
  3. Шевронные. Обладают преимуществами косозубых колёсных пар и не нагружают подшипники осевыми силами, так как силы направлены в разные стороны.
  4. Криволинейные. Применяются при больших передаточных отношениях. Менее шумные и лучше работают на изгиб.

Прямозубые колёсные пары имеют наибольшее распространение. Их легко проектировать, изготавливать и эксплуатировать.

О действительных и мнимых превосходствах ЭЦ-зацепления

Далее мы намерены обратить внимание специалистов редукторной России на одну из новейших разработок В. Становского

Потому что других в России, по его мнению, и мнению Фонда перспективных исследований России, попросту нет. Речь об ЭЦ-зацеплении Становского, его действительных и мнимых свойствах и превосходствах.

Рисунок 1.

В январе 2018-го года в НТЦ «Редуктор» обратилось предприятие ООО «МЕХАНИКА-Р» с предложением срочно отремонтировать редуктор 5Ц2-125-12. 5, не прошедшим сравнительные испытания по шуму. Как заявили специалисты предприятия «МЕХАНИКА-Р», в этом редукторе применено ЭЦ-зацепление В. Становского . Наш анализ примененной в редукторе 5Ц2-125 зубчатой передачи показал, что это цилиндрическая зубчатая передача с выпукло-вогнутым зацеплением. Часть торцовых профилей этой передачи выполнена по обычным сопряженным эвольвентам, а вторая часть, по окружности, сопряженной с циклоидой в том же торцовом сечении, см. рис. 1.

Рисунок 2

На наш взгляд, ничего «революционного» в зтом техническом решении В. Становского нет. Аналогичные технические решения, когда профили или его части описываются дугами окружностей известны в патентной литературе. Такая передача вполне может быть классифицирована, как одна из разновидностей известной передачи с зацеплением Новикова — со «смешанным», т. е. двойным контактом (см. рис. 2) . Такой «смешанный» контакт в зубчатых передачах в одних случаях оказывает положительное, а в других — отрицательное влияние на эксплуатационные свойства передачи.

Важно отметить, что, как и прежние выпукло-вогнутые передачи Новикова, передача Становского с ЭЦ-зацеплением —дозаполюсная. Полюс этой передачи расположен примерно по средине высоты зубьев

И если это так, то примененная в редукторе 5Ц2-125-12.5 передача с ЭЦ-зацеплением содержит в себе все признаки и хронические недостатки полюсных передач, где свойства полюса улучшить невозможно, из-за чего как раз все прежние российские передачи с зацеплением Новикова с выпукло-вогнутыми торцовыми профилями оказались совершенно неконкурентоспособными по сравнению с передачами, применяемыми зарубежными редукторными фирмами.

Тем не менее, сказанное здесь об ЭЦ-зацеплении — это сугубо локальное дискуссионное мнение В. И. Парубца, выигравшего прежде дискуссию о действительных и мнимых превосходствах российских зубчатых передач с зацеплением Новикова. Но, не ознакомленного подробно со всеми особенностями теоретических разработок и испытаний ЭЦ-зацепления, примененного в редукторе 5Ц2-125-12.5.

Поэтому, чтобы восполнить этот пробел и получить необходимую информацию мы обратились на сайт В. Становского, и неожиданно нашли на нем совершенно новую информацию, с уверенностью можно сказать, важную для настоящего и будущего редукторной практики всех отраслей промышленности России.

Источник цитаты: http://www.ec-gearing.ru/news.php?id=109,

Речь идет об Акте научно-технической приемки аванпроекта «Экспериментальные исследования характеристик эксцентриково-циклоидальной зубчатой передачи в сравнении с другими, широко применяемыми в машиностроении с целью формирования рекомендаций по ее применению». Акт подписан и утвержден специалистами и генеральным директором Фонда перспективных исследований России А. И. Григорьевым

Согласно Акту, аванпроект по столь важной для редукторной России теме, считается законченным и принятым

В Акте Исполнителю аванпроекта рекомендовано:

Ознакомить с результатами сравнительных испытаний заинтересованные организации и производителя контрольного редуктора ООО «Зарем» .

Что такое модуль зубчатого колеса

Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров

  • диаметр;
  • число зубьев;
  • шаг;
  • высота зубца;
  • и некоторые другие.

Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.

В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.

Для расчета этого параметра применяют следующие формулы:

m=t/π,

где t — шаг.

Параметры зубчатых колес

Модуль зубчатого колеса можно рассчитать и следующим образом:

m=h/2,25,

где h — высота зубца.

И, наконец,

m=De/(z+2),

где De — диаметр окружности выступов,а z — число зубьев.

Что же такое модуль шестерни?

это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.

3.4. Редуктор с двумя внутренними зацеплениями (рис. 3.Б)

Передаточное
отношение такого редуктора определяется
по формуле:

=
. (3.22)

Найдем зависимость
чисел зубьев Z1
и Z4
от

при условии обеспечения минимальных
радиальных размеров (минимальных чисел
зубьев).

Минимальное число
зубьев колес с внутренними зубьями
равно 85, а находящихся в зацеплении с
ними сателлитов равно 20.

Минимальная
разность чисел зубьев колес, находящихся
во внутреннем зацеплении, равно 8.
Обозначим разности чисел зубьев Z1-Z2=D
и

Z4-Z1=C.
Тогда Z2=Z1-D
и Z3=Z4-D.
После подстановки в (3.22) величин Z2
и Z3
получим:

=
, (3.23)

откуда

D
=
.

Здесь

– абсолютное значение передаточного
отношения.

Минимальное
передаточное отношение при Z2=20
из (3.23) получается равным 26,5 , а максимальное
при D=8
равно 828.

Задаваясь разностью
С=Z4-Z1
в пределах от 1 до 4, можно при известном
передаточном отношении

найти D,
а затем и числа зубьев всех остальных
колес при Z1=85:

Z2=Z1-D,

(3.24)

Z3=Z2+C=Z1-D+C,

(3.25)

Z4=Z1+C.

(3.26)

Если при этом
получится Z2<20,
то нужно увеличить С. Для предотвращения
многовариантных расчетов можно
воспользоваться графиком (рис.4),
построенным по результатам вычислений
при различных числах зубьев сателлитов
Z2
с использованием (3.23) при передаточных
отношениях
=10…70.

Число зубьев
сателлита Z2
и разность С должны быть выбраны по
возможности наименьшими, т.к. при этом,
во-первых, уменьшается масса колес
передачи и, во-вторых, появляется
возможность создания многосателлитной
передачи. Так, например, при U=30
целесообразно принять С=1 и с помощью
графика найти Z2=22.
Тогда при Z1=85
получим Z3=22+1=23
и Z4=85+1=86.
Передаточное отношения при таких числах
зубьев составит величину

=8622/8622-8523=-30.03
что на 0.1% отличается от заданного.

Рис.4. Выбор числа
зубьев Z2
для различных
значений Uпл=10…70
и С=1…4

Количество
сателлитов можно определить из условия
соседства сателлитов второго ряда
колес передачи (рис.5), т.е. исходя из
чисел зубьев Z3
и Z4,
т.к. Z4>Z2.

В соответствии
со схемой зацепления, показанной на
рис.5, условие соседства сателлитов
примет вид:

где k-
число сателлитов.

Подставив сюда z3 из (3.25) и z4 из (3.26) и несколько преобразуя, получим:

sin
> –1, (3.28)

откуда
можно найти максимальное количество
сателлитов

kmax=
= . (3.29)

Рис .5. К определению
условия соседства сателлитов

На рис.6. представлены
результаты расчета максимального числа
сателлитов по формуле ( 3.29 ) для передач
с
=10…70
при разных значениях
с = 1…4. Как видно из анализа рис.6, с
увеличением передаточного отношения

максимально возможное число сателлитов
уменьшается и, например, для
=60
значение “C”
допускается только равным 1 и кmax= 3, а для С
≥ 2 и

≥ 40 возможен только один сателлит, и
водило превращается в кривошип.

Рис.6. Выбор
максимального числа сателлитов для
различных

значений Uпл=10…70
и С=1…4

Передаточное число — главная передача

Затем по зависимостям, установленным в теории автомобиля, определяют передаточные числа главной передачи и коробки передач, а также число передач.

Этими параметрами являются характеристика, рабочий объем и оборотность двигателя; передаточные числа главной передачи, коробки передач и демультипликатора.

Разные передаточные числа ступичных редукторов передних и задних колес в сочетании с передаточными числами главных передач переднего и заднего мостов обеспечивают одинаковые окружные скорости передних и задних колес, что необходимо для нормальной работы ходовой части тягача.

Повышение динамического фактора может быть достигнуто путем повышения крутящего момента двигателя или увеличения передаточного числа главной передачи. Улучшение динамичности грузовых автомобилей достигается за счет уменьшения их собственного веса, а легковых автомобилей — также и путем придания им обтекаемой формы.

Специально построенные газогенераторные автомобили ( заводского производства) отличаются некоторыми особенностями двигателя, увеличенным передаточным числом главной передачи и изменениями кузова и кабины в связи с размещением газогенераторной установки. Кроме того, на них устанавливаются специальные контрольные приборы и приспособления.

Мт — крутящий момент мотора, гк — передаточное число коробки передач, г — передаточное число главной передачи и — ij — кпд трансмиссии.

Тяговые качества грузовых автомобилей при постоянной работе с прицепами могут быть повышены за счет увеличения передаточного числа главной передачи при соответственном снижении их максимальной скорости.

Число оборотов привода спидометра, отнесенное к пути, пройденному автомобилем, обусловливается действительным радиусом качения шины, передаточным числом главной передачи автомобиля и передаточным числом привода вала спидометра.

Выбор числа оборотов того или иного подшипника зависит от средней эксплоатационной скорости автомобиля, от радиуса качения колес и от соответствующих передаточных чисел главной передачи и коробки передач.

Для того чтобы лучше приспособить грузовой автомобиль к заданным условиям эксплоатации, одно и то же шасси снабжается шинами либо стандартного, либо повышенного размера, с различным рисунком протектора, а передаточное число главной передачи соответственно подбирается. Самое короткобазное шасси данной модели используется не только для установки кузова-самосвала, предназначенного для перевозки компактных грузов, но применяется также и под тягач для седельного полуприцепа. Самое длиннобазное шасси снабжается обычно кузовом с решетчатыми бортами для перевозки емких грузов.

Исходными данными для предварительного выбора основных размеров и параметров зубчатых колес главных передач являются максимальное значение крутящего момента на ведущем зубчатом колесе главной передачи ( по двигателю или сцеплению ведущих колес), передаточное число главной передачи и0, а также ограничения по дорожному просвету.

Главная передача служит для передачи крутящего момента от карданного вала к полуосям ведущих колес под углом 90 и для повышения величины крутящего момента. Передаточное число главной передачи ( для легковых автомобилей 4 — 5, для грузовых 6 — 7) подбирается из расчета получения достаточной величины тягового усилия.

Автомобиль-самосвал МАЗ-205 изготовлен на базе автомобиля МАЗ-200 ( ЯАЗ-200) и отличается от него укороченной на 720 мм базой и укороченными вследствие этого карданными валами. Передаточное число главной передачи увеличено до 9 0 для улучшения тяговых качеств автомобиля при работе его в тяжелых дорожных условиях. Пневматический привод тормозов автомобиля несколько изменен, так как самосвал МАЗ-205 не предназначен для работы с прицепами.

Главная передача предназначена для увеличения крутящего момента, подводимого к ведущим колесам. Передаточное число главной передачи зависит в основном от мощности и быстроходности двигателя, назначения и общей массы автомобиля. Главные передачи могут быть с коническими, гипоидными или червячными шестернями.

Данные по автомобилю Москвич соответствуют передаточным числам коробки передач первой модели. Победа соответствуют передаточному числу главной передачи / 0 5 125 и передаточным числам коробки передач первой модели.

Конструкция зубчатого колеса

Встречается просто огромное количество разновидностей шестерен, все они характеризуются своими определенными особенностями. Среди конструкционных особенностей отметим следующие моменты:

  1. При изготовлении цилиндрических и конических шестерен с прямым зубом рабочая часть создается заодно целое с валом. Это связано с тем, что размеры конструкции существенно уменьшаются. За счет создания такой конструкции можно получить деталь с высокой точностью и износостойкостью.
  2. Встречаются и шестерни насадного типа. Они весьма распространены в случае, когда диаметр рабочей части большой. За счет установки насадного варианта исполнения есть возможность проводить обслуживание конструкции.
  3. При диаметре менее 500 мм изделие получается методом ковки и отливки, а также при применении технологии сварки. Вариант исполнения более 500 мм изготавливаются методов отливки и сварки.
  4. Клепанные или свертные колеса могут устанавливаться в случае, если есть необходимости в экономии используемого материала.

Конструктивными особенностями подобного варианта исполнения можно назвать:

  1. В качестве заготовки применяется диск определенной толщины.
  2. В центральной части есть посадочное отверстие с прорезью для шпонки. Как правило, оно имеет достаточно большую кайму.
  3. Рабочая часть представлена зубьями, которые могут быть расположены прямо или под углом. При этом геометрия зуба может существенно отличаться, все зависит от области эксплуатации.

Изготовление цилиндрических зубчатых колес проводится при применении специального оборудования. Примером можно назвать зубонарезные станки, которые работают по методу обкатки. Стоит учитывать, что процесс изготовления конических зубчатых колес существенно отличается.

Передаточное отношение (передаточное число)

При создании ремённой передачи нужно понимать, во сколько мы выиграем или проиграем в скорости и силе, чтобы собрать устройство с нужными характеристиками.

В этом нам поможет передаточное отношение, которое записывается буквой i. Оно показывает, во сколько раз снизилась скорость вращения на выходе. Согласно золотому правилу механики во столько же раз увеличится сила.

Например, передаточное отношение i = 1 : 1 показывает, что 1 оборот на входе даст 1 оборот на выходе, а отношение i = 5 : 1 показывает, что 5 оборотов на входе дает 1 оборот на выходе, то есть скорость упала в 5 раз (передача понижающая).

Если дробь можно сократить, её сокращают. Например, i = 5 : 25 = 1 : 5 (передача повышающая).

Передаточное отношение можно записать в виде числа, поделив числитель на знаменатель. Например, i = 5 : 1 = 5, или i = 1 : 4 = 0,25. Можно сделать вывод, что:

Формулу для расчета передаточного отношения можно вывести из правила рычага. Передаточное отношение для ремённой передачи рассчитывается так:

Узнать размеры шкивов можно с помощью линейки. Самый точный метод измерения диаметра – с помощью штангенциркуля.  

Рис. 10. Два способа измерения диаметров шкивов

Если передача многоступенчатая (двух-, трехступенчатая и т.д.), то общее передаточное отношение будет вычисляться как произведение отдельных передаточных отношений. Передаточное отношение для шкивов, жестко закрепленных на общей оси, не считается — скорость их вращения будет всегда одинаковой!

Эта формула справедлива для этого рисунка:

Рис. 11. Многоступенчатая ремённая передача

Таким же образом передаточное отношение можно посчитать через соотношения радиусов.

Технологический процесс

Процесс изготовления шестерни на крупных производственных линиях максимально автоматизирован. Классический техпроцесс характеризуется следующими особенностями:

  1. Для начала определяются основные параметры изделия, к примеру, число зубьев, модуль и степень точности геометрических размеров.
  2. Следующий этап заключается в проведении заготовительной процедуры. Чаще всего проводится штамповка при использовании горизонтально-ковочной машины.
  3. Для повышения эксплуатационных характеристик выполняется нормализация. Подобная термическая обработка позволяет снизить напряжения внутри материала.
  4. Токарно-винторезная процедура позволяет получить заготовку требующихся размеров. Для этого выполняется точение поверхности и расточка фасок.
  5. После механической обработки прямозубых шестерен выполняется повторно нормализация.
  6. Заготовка подвергается зубофрезерной обработке. Для этого применяется полуавтомат 5306К или другое подобное оборудование.
  7. Следующий шаг заключается в слесарной обработке. Технологический процесс определяет появление заусенец и других дефектов, которые устраняются при применении полуавтомата 5525. На линиях с низкой производительностью зачистка проводится ручным методом.
  8. После получения зубьев выполняется термическая обработка, для чего часто применяется установка ТВЧ. Закалка позволяет существенно повысить твердость поверхности и ее износостойкость.
  9. Шлифование поверхности. Для получения поверхности требуемого качества выполняется шлифовка. Есть довольно больше количество различного оборудования, которое подходит для шлифования самых различных поверхностей.
  10. Большое распространение получили насадные шестерни. Они устанавливаются на валу, могут быть больших и малых размеров. Фиксация насадного варианта исполнения проводится за счет шпонки. Получить шпоночный паз можно при применении долбежного станка.
  11. Зубошлифование также проводится при применении специальных станков.

https://youtube.com/watch?v=KbjmqvPM-1c

В заключение отметим, что процедура зубофрезервания достаточно сложна, предусматривает применение специального оборудования.

Материал

Зубчатые передачи должны обладать надежностью в роботе при разных скоростях и нагрузках, прочностью зубьев, их износостойкостью и способностью противостоять заеданию. В качестве основного материала для колесных пар выступает сталь. Она может подвергаться термообработке или иметь в своем составе легирующие добавки и примеси. Как материал для тихоходных механизмов, имеющих большие габариты и открытый тип конструкции, может выступать чугун.

Для предотвращения заедания парные колеса изготавливают из различного по крепости материала. Если для колеса и шестерни используется высокоуглеродистая сталь, то используют различную степень их термообработки. Также применяется бронза, латунь, капролон, текстолит, пластики и формальдегиды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector