Жесткость пружины

Особенности расчета жесткости соединений пружин

Важный моментом является расчет нескольких упругих элементов, соединенных последовательно или параллельно.

При параллельном расположении нескольких деталей общая жесткость этой системы определяется простой суммой коэффициентов отдельных комплектующих. Как нетрудно заметить, жесткость системы больше, чем отдельной детали.

При последовательном расположении формула более сложная: величина, обратная суммарной жесткости, равна сумме величин, обратных к жесткости каждой комплектующей. В этом варианте сумма меньше слагаемых.

Используя эти зависимости, легко определиться с правильным выбором упругих комплектующих для конкретного случая.

Видео

Из этого видео вы узнаете, как определить жесткость пружины.

Чем большей деформации подвергается тело, тем значительней в нем возникает сила упругости. Это значит, что деформация и сила упругости взаимосвязаны, и по изменению одной величины можно судить об изменении другой. Так, зная деформацию тела, можно вычислить возникающую в нем силу упругости. Или, зная силу упругости, определить степень деформации тела.

Если к пружине подвешивать разное количество гирек одинаковой массы, то чем больше их будет подвешено, тем сильнее пружина растянется, то есть деформируется. Чем больше растянута пружина, тем большая в ней возникает силы упругости. Причем опыт показывает, что каждая следующая подвешенная гирька увеличивает длину пружины на одну и туже величину.

Так, например, если исходная длина пружины была 5 см, а подвешивание на ней одной гирьки увеличило ее на 1 см (т. е. пружина стала длиной 6 см), то подвешивание двух гирек увеличит ее на 2 см (общая длина составит 7 см), а трех — на 3 см (длина пружины будет 8 см).

Еще до опыта известно, что вес и возникающая под его действием сила упругости находятся друг с другом в прямопропорциональной зависимости. Кратное увеличение веса во столько же раз увеличит силу упругости. Опыт же показывает, что деформация точно также зависит от веса: кратное увеличение веса во столько же раз увеличивает изменения в длине. Это значит, что, исключив вес, можно установить прямопропорциональную зависимость между силой упругости и деформацией.

Если обозначить удлинение пружины в результате ее растяжения как x или как ∆ l ( l 1 – l , где l — начальная длина, l 1 — длина растянутой пружины), то зависимость силы упругости от растяжения можно выразить такой формулой:

В формуле используется коэффициент k . Он показывает, в какой именно зависимости находятся сила упругости и удлинение. Ведь удлинение на каждый сантиметр может увеличивать силу упругости одной пружины на 0,5 Н, второй на 1 Н, а третьей на 2 Н. Для первой пружины формула будет выглядеть как Fупр = 0,5x, для второй — Fупр = x, для третьей — Fупр = 2x.

Коэффициент k называют жесткостью пружины. Чем жестче пружина, тем труднее ее растянуть, и тем большее значение будет иметь k. А чем больше k, тем больше будет сила упругости (Fупр) при равных удлинения (x) разных пружин.

Жесткость зависит от материала, из которого изготовлена пружина, ее формы и размеров.

Единицей измерения жесткости является Н/м (ньютон на метр). Жесткость показывает, сколько ньютонов (сколько сил) надо приложить к пружине, чтобы растянуть ее на 1 м. Или насколько метров растянется пружина, если приложить для ее растяжения силу в 1 Н. Например, к пружине приложили силу в 1 Н, и она растянулась на 1 см (0,01 м). Это значит, что ее жесткость равна 1 Н / 0,01 м = 100 Н/м.

Также, если обратить внимание на единицы измерения, то станет понятно, почему жесткость измеряется в Н/м. Сила упругости, как и любая сила, измеряется в ньютонах, а расстояние – в метрах

Чтобы уровнять по единицам измерения левую и правую части уравнения Fупр = kx, надо в правой части сократить метры (то есть поделить на них) и добавить ньютоны (то есть умножить на них).

Соотношение между силой упругости и деформацией упругого тела, описываемое формулой Fупр = kx, открыл английский ученый Роберт Гук в 1660 году, поэтому это соотношение носит его имя и называется законом Гука.

Упругой деформацией является такая, когда после прекращения действия сил, тело возвращается в свое исходное состояние. Бывают тела, которые почти нельзя подвергнуть упругой деформации, а у других она может быть достаточно большой. Например, поставив тяжелый предмет на кусок мягкой глины, вы измените его форму, и этот кусок сам уже не вернется в исходное состояние. Однако если вы растяните резиновый жгут, то после того, как отпустите его, он вернет свои исходные размеры. Следует помнить, что закон Гука применим только для упругих деформаций.

Формула Fупр = kx дает возможность по известным двум величинам вычислять третью. Так, зная приложенную силу и удлинение, можно узнать жесткость тела. Зная, жесткость и удлинение, найти силу упругости. А зная силу упругости и жесткость, вычислить изменение длины.

Audi A3 маленький самолётик › Бортжурнал › Расчёт жёсткости пружин подвески

Здравствуйте! Поговорим или попишем о пружинах подвески.Пост для того, чтобы не забыть и для того, чтобы ознакомить Вас, читатели Предыдущая моя запись была про подвеску. На этот раз разберём самый интересный, на мой взгляд, компонент пружину подвески. Пока речь пойдёт про передние пружины, позже я добавлю и задние, когда доберусь до них, сниму мерки и метки. Давненько не даёт мне покоя эта тема, поэтому сведу всё в одну запись.Предыстория простая — иметь возможность подобрать то, что нужно под конкретный запрос.

Итак, для расчёта жёсткости пружины необходима следующая формула:

Как рассчитать на какую же величину произойдёт сжатие пружины под весом автомобиля?На этот вопрос нам ответит закон Гука: F = -k*x, где k — коэффициент жёсткости, а х — величина линейной деформации пружины. Соответственно линейную деформацию можно выразить: x = -Fk.Вот вроде бы и вся теоретическая часть.Например, хочу я подобрать себе пружины по жёстче да повыше и, тут возникает затык, поскольку на VAG масса пружин по каталогу, но характеристик их нет нигде. Вот люди и мучаются, пока придут к своему идеалу.Попался мне каталог пружин Kilen. Судя по отзывам можно поставить твёрдую 4-ку этому производителю. Некоторую подборку я здесь представлю. Пружины отфильтрованы по размеру основания +- 2 мм, типу CI, диаметру прутка, а так же отсортированы по диаметру прутка:

В каталоге есть легенда по параметрам пружин:

Теперь поговорим о клиренсе в стационарном режиме. Клиренс определяется как раз изменением длины пружины под действием силы тяжести.

Если мы хотим сохранить клиренс, но ужесточить подвеску, нам необходимо изменить параметр х в сторону уменьшения за счет увеличения коэфициента жесткости, при этом на столько же, насколько изменили значение х, необходимо выбрать пружину короче. Если мы увеличим только жесткость, но при этом длина пружина останется прежней, авто станет жестче, но при этом приподнимется.

Если мы хотим приподнять машину, но сохранить жесткость, то необходимо использовать более длинные пружины, но с тем же коэффициентом жесткости

На чем хотелось бы сакцентировать внимание: если происходит изменение клиренса одной из осей, а клиренс второй оси остается прежний, то автоматически происходит изменение распределения веса по осям. Если мы приподняли заднюю часть, то баланс веса смещается вперед, соответственно, сила, действующая на задние пружины становится меньше, а значит и параметр х тоже уменьшается

Этот прием часто применяется для снижения вероятности пробуксовки передней оси на переднеприводных автомобилях. Наиболее популярный метод сохранения жесткости с увеличением клиренса — это установка проставок под те же пружины или на опорную чашку. При таком подходе сама пружина сжимается под весом авто почти так же, как и до доработки, с небольшой поправкой на перераспределение веса по осям, но за счет проставок дорожный просвет увеличивается на толщину проставки.

Параметр х очень важен для стойки, так как у штока аммортизатора имеется некоторый участок примерно в треть длины, который в стационарном состоянии должен находиться внутри аммортизатора. Это необходимо для того, чтобы аммортизатор работал не только на отбой, но и на разгрузку. Если Вы поставите пружины настолько жесткие, что после опускания автомобиля с домкрата пружина не сожмется на необходимый ход штока, то в процессе эксплуатации аммортизаторы очень быстро выйдут из строя. Кроме того, неправильно подобранное значение х повлияет и на управляемость автомобиля — неправильно настроенная ось будет подпрыгивать на каждой кочке и в поворотах.

Ну, и в заключение поговорим о понятии «преднатяг». Если пружина ставится соосно с аммортизатором, то преднатяг определяется разницей между длиной пружины и длиной вытянутого штока. Т.е. это та часть значения х, которая сохраняется даже при подъеме авто на подъемнике. На само значение х преднатяг не влияет. Если говорят, что преднатяг нулевой, то это значит, что при разборе и сборе стойки Вам не понадобятся стяжки пружин.

Выделенный курсивом материал взят у человека Box77 . За что ему спасибо

Пружины нулевой длины

Упрощенная подвеска LaCoste с использованием пружины нулевой длины

График зависимости длины L пружины от силы F обычных (+), нулевой (0) и отрицательной (-) длины пружины с одинаковой минимальной длиной L и жесткостью пружины

«Пружина нулевой длины» — это термин для специально разработанной цилиндрической пружины, которая оказывала бы нулевое усилие, если бы она имела нулевую длину; если бы не было ограничений из-за конечного диаметра проволоки такой винтовой пружины, она имела бы нулевую длину в нерастянутом состоянии. То есть на линейном графике силы пружины в зависимости от ее длины линия проходит через начало координат. Очевидно, что винтовая пружина не может сжиматься до нулевой длины, потому что в какой-то момент витки касаются друг друга, и пружина больше не может сокращаться.

Пружины нулевой длины изготавливаются путем изготовления винтовой пружины со встроенным натяжением (в проволоку изгибается, когда она наматывается во время производства. Это работает, потому что витая пружина «раскручивается» при растяжении.), Поэтому, если она может сжаться кроме того, точка равновесия пружины, точка, в которой ее возвращающая сила равна нулю, находится на нулевой длине. На практике пружины нулевой длины изготавливаются путем объединения пружины «отрицательной длины», сделанной с еще большим натяжением, чтобы ее точка равновесия находилась на «отрицательной» длине, с куском неэластичного материала надлежащей длины, чтобы точка нулевой силы будет иметь нулевую длину.

Пружина нулевой длины может быть прикреплена к грузу на шарнирной стреле таким образом, что сила, действующая на груз, почти точно уравновешивается вертикальной составляющей силы пружины, независимо от положения стрелы. Это создает горизонтальный «маятник» с очень длинным периодом колебаний . Долгопериодические маятники позволяют сейсмометрам определять самые медленные волны землетрясений. ЛаКоста подвеска с нулевой длиной пружинами также используются в гравиметрах , потому что он очень чувствителен к изменениям гравитации. Пружины для закрывания дверей часто делают примерно нулевой длины, так что они оказывают усилие, даже когда дверь почти закрыта, поэтому они могут удерживать ее в закрытом состоянии.

Расчет силы упругости

Если растягивать пружину вручную, мы можем заметить: чем больше мы растягиваем пружину, тем сильнее она сопротивляется.

Значит, с удлинением пружины связана сила, которая сопротивляется этому удлинению.

Конечно, если пружина окажется достаточно упругой, чтобы сопротивляться. Например, разноцветная пружина-игрушка (рис. 3), изготовленная из пластмассы, сопротивляться растяжению, увеличивающему ее длину в два раза, практически не будет.

Разноцветная пластмассовая пружина-игрушка растяжению сопротивляется слабо

Закон Гука

Английский физик Роберт Гук, живший во второй половине 17-го века, установил, что сила сопротивления пружины и ее удлинение связаны прямой пропорциональностью. Силу, с которой пружина сопротивляется деформации, он назвал \( F_{\text{упр}} \) силой упругости.

\

Эту формулу назвали законом упругости Гука.

\( F_{\text{упр}} \left( H \right) \) – сила упругости;

\( \Delta L \left(\text{м} \right) \)  – удлинение пружины;

\( \displaystyle k \left(\frac{H}{\text{м}} \right) \)  – коэффициент жесткости (упругости).

Какие деформации называют малыми

Закон Гука применяют для малых удлинений (деформаций).

Если убрать деформирующую силу и тело вернется к первоначальной форме (размерам), то деформации называют малыми.

Если же тело к первоначальной форме не вернется – малыми деформации назвать не получится.

Как рассчитать коэффициент жесткости

Груз, прикрепленный к концу пружины, растягивает ее (рис. 4). Измерим удлинение пружины и составим силовое уравнение для проекции сил на вертикальную ось. Вес груза направлен против оси, а сила упругости, противодействующая ему – по оси.

Рис. 4. Вес подвешенного на пружине груза уравновешивается силой упругости

Так как силы взаимно компенсируются, в правой части уравнения находится ноль.

\

Подставим в это уравнение выражение для силы упругости

\

Прибавим к обеим частям вес груза и разделим на измеренное изменение длины \(\Delta L \) пружины. Получим выражение для коэффициента жесткости:

\

\(g\) – ускорение свободного падения, оно связано с силой тяжести.

Лабораторная работа N06

Определение величины коэффициента жесткости пружины статическим и динамическим методами

Цель:вычислить и сравнить величины коэффициентов жесткости пружины, определенных статическим и динамическим методами.

Приборы и оборудование: штатив, набор пружин различной жесткости, набор грузов, линейка, секундомер.

Обоснование метода

1. Статический метод определения коэффициента упругости
Из закона Гука, определяющего линейную зависимость между механической деформацией тела и деформирующей силой в случае

(6.1)

ΔlFРmP=mg

(6.2)

2. Динамический метод определения коэффициента упругости
Из формулы Томсона для пружинного маятника (I.4) выразим коэффициент упругости k:

(6.3)

kдинmkTсрtсрN

(6.4)

Порядок выполнения работы

  1. Соберите пружинный маятник. Для этого на штативе укрепите указанную лаборантом или преподавателем одну из пружин набора, измерив ее начальную длину в недеформированном состоянии l, и подвесьте к ней один груз известной массы m1 из набора грузов (см. рис.5).
  2. Измерьте длину пружины в растянутом (деформированном) состоянии l и определите деформацию пружины Δl=l- l.
  3. Повторите измерения и расчеты еще для двух грузов массами m2 и m3. Вычислите по формуле (6.2) значения kст и рассчитайте его среднее значение kст ср по формуле (0.3) и погрешность по формуле (0.4).
  4. Заполните таблицу 1.

    Таблица 1

    Результаты опыта по определению коэффициента жесткости пружины статическим методом

    Номер опыта Масса груза m, кг Вес груза P, Н Длина пружины Деформация Δl, м kст, Н/м kст ср ±Δkст, Н/м
    начальная l, м после растяжения l, м
    1              
    2            
    3            
  5. Не меняя пружины, подвесьте груз массой m1 и измерьте время t1 для N=60 полных колебаний груза малой амплитуды.
  6. Не меняя пружины и груза, повторите измерения еще 4 раза.
  7. Найдите среднее время для 60 колебаний tср=(t1+t2+┘+t5)/5 и по формуле (6.4) рассчитайте среднее значение периода колебаний Tср.
  8. По формуле (0.4) рассчитайте абсолютную Δt и по формуле (0.6) — относительную погрешность времени εt.
  9. Используя формулу (6.3), рассчитайте среднее значение динамического коэффициента жесткости исследуемой пружины kдин.
  10. Рассчитайте относительную погрешность коэффициента упругости по формуле εk=2εt, следующей из (0.8), и по формуле (0.9) определите абсолютную погрешность Δk.
  11. Заполните таблицу 2.

    Таблица 2

    Результаты опыта по определению коэффициента жесткости пружины динамическим методом

    Номер опыта Масса груза m, кг Число колебаний N Время колебаний t tср Период Tср, с Коэффициент упругости kдин ср, Н/м
    1            
    2  
     
    5  
      Δt= ; εt= εk= ; Δk= ;
  12. Сравнив значения kст ср и kдин ср, сформулируйте и запишите вывод.

Контрольные вопросы

  1. Виды деформации. Закон Гука.
  2. Что называется жесткостью пружины и от чего она зависит?
  3. Опишите превращение энергии при колебаниях пружинного маятника.
  4. Какие силы действуют на груз в опыте? Запишите закон Ньютона для него. Выведите формулу (6.2).

Коэффициент жесткости цилиндрической пружины

На практике и в физике довольно большое распространение получили именно цилиндрические пружины. Их ключевыми особенностями можно назвать следующие моменты:

  1. При создании указывается центральная ось, вдоль которой и действует большинство различных сил.
  2. При производстве рассматриваемого изделия применяется проволока определенного диаметра. Она изготавливается из специального сплава или обычных металлов. Не стоит забывать о том, что материал должен обладать повышенной упругостью.
  3. Проволока накручивается витками вдоль оси. При этом стоит учитывать, что они могут быть одного или разного диаметра. Довольно большое распространение получил вариант исполнения цилиндрического типа, но большей устойчивостью характеризуется цилиндрический вариант исполнения, в сжатом состоянии деталь обладает небольшой толщиной.
  4. Основными параметрами можно назвать больший, средний и малый диаметр витков, диаметр проволоки, шаг расположения отдельных колец.

Не стоит забывать о том, что выделяют два типа деталей: сжатия и растяжения. Их коэффициент жесткости определяется по одной и той же формуле. Разница заключается в следующем:

  1. Вариант исполнения, рассчитанный на сжатие, характеризуется дальним расположением витков. За счет расстояние между ними есть возможность сжатия.
  2. Модель, рассчитанная на растяжение, имеет кольца, расположенные практически вплотную. Подобная форма определяет то, что при максимальная сила упругости достигается при минимальном растяжении.
  3. Также есть вариант исполнения, который рассчитан на кручение и изгиб. Подобная деталь рассчитывается по определенным формулам.

Расчет коэффициента цилиндрической пружины может проводится при использовании ранее указанной формулы. Она определяет то, что показатель зависит от следующих параметров:

  1. Наружного радиуса колец. Как ранее было отмечено, при изготовлении детали применяется ось, вокруг которой проводится накручивание колец. При этом не стоит забывать о том, что выделяют также средний и внутренний диаметр. Подобный показатель указывается в технической документации и на чертежах.
  2. Количества создаваемых витков. Этот параметр во многом определяет длину изделия в свободном состоянии. Кроме этого, количество колец определяет коэффициент жесткость и многие другие параметры.
  3. Радиуса применяемой проволоки. В качестве исходного материала применяется именно проволока, которая изготавливается из различных сплавов. Во многом ее свойства оказывают влияние на качества рассматриваемого изделия.
  4. Модуля сдвига, который зависит от типа применяемого материала.

Коэффициент жесткости считается одним из наиболее важных параметров, который учитывается при проведении самых различных расчетов.

Параллельное соединение пружин

с1с2

. (2.9)

Р

Сила упругости эквивалентной пружины с коэффициентом жесткости с* будет равна сумме сил упругости двух установленных пружин, откуда с учетом (2.9) получаем

,

окончательно

. (2.10)

Последовательное соединение пружин

При последовательном соединении двух пружин, имеющих коэффициенты жесткости с1, с2 (рис. 2.6), смещение тела равно сумме деформаций пружин:

. (2.11)

Рис. 3.6 Последовательное соединение пружин

Сила упругости эквивалентной пружины с коэффициентом жесткости с* будет равна каждой из сил упругости установленных пружин, откуда

,

откуда

Окончательно с учетом (2.11) получаем

. (2.12)

      1. Влияние сопротивления на свободные колебания

Пусть на точку массы m, совершающую прямолинейное движение, действуют две силы (рис. 2.7):

  1. Восстанавливающая сила (сила упругости пружины):

    .

  2. Сила сопротивления, пропорциональная скорости движения точки (сила сопротивления демпфера): .

Рис. 2.7 Движение массы с демпфированием

Дифференциальное уравнение движения точки запишется как

,

обозначая

получаем линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами:

. (2.14)

Характеристическое уравнение имеет вид

, (2.15)

его корни равны

, (2.16)

где – дискриминант.

Как известно из курса высшей математики, общее решение дифференциального уравнения (2.14) существенно зависит от знака дискриминанта , т.е. от соотношения между b и k.

1-й случай (малое сопротивление): bk , D0.

Обозначим , причем k*k. Тогда корни (2.16) характеристического уравнения будут комплексно сопряженными:

,

Общее решение дифференциального уравнения (2.14) в данном случае имеет вид

, (2.17)

это затухающие колебания с частотой k* и периодом

Амплитуда колебаний убывает со временем. Отношение последующей амплитуды к предыдущей называется декрементом затухания:

Рис. 2.8 Затухающие колебания

Часто используется также логарифмический декремент

Таким образом, амплитуды образуют геометрическую прогрессию с показателем q, меньшим единицы.

Видим также, что наличие сопротивления приводит к уменьшению частоты колебаний (k*k) и к увеличению их периода (Т*> Т).

2-й случай (граничный): b = k , D=0.

Корни (2.16) характеристического уравнения получаются кратные, , и решение дифференциального уравнения (2.14) приобретает вид

. (2.19)

Поскольку экспонента убывает быстрее, чем растёт линейная функция времени, в зависимости от начальных условий движения получим ту или иную картину затухающего апериодического (т.е. не колебательного) движения (рис.2.9).

3-й случай (большое сопротивление): b > k, D > 0.

В этом случае обозначим >0, и оба корня (2.16) характеристического уравнения будут действительными и отрицательными:

< 0, < 0,

общее решение

. (2.20)

Рис. 2.9 График затухающего апериодического движения

Здесь также получаем затухающие апериодическое движение, графики будут такие же, как и в случае b= k.

Расчет жесткости цилиндрической пружины

Довольно просто понять как работает плоская пружина. Если положить на край письменного стола линейку и прижать один ее конец рукой к поверхности, но второй можно упруго изгибать, запасая и высвобождая энергию. Очевидно, что в момент изгиба расстояния между молекулами материала в некоторых фрагментах линейки увеличиваются, в некоторых уменьшаются. Электромагнитные связи, действующие между молекулами, стремятся вернуть вещество к прежнему геометрическому состоянию.

Несколько сложнее дело обстоит с цилиндрической пружиной. В ней энергия запасается не благодаря деформации изгиба, а за счет скручивания проволоки, из которой пружина навита, относительно продольной оси этой проволоки.

Представим сильно увеличенное сечение проволоки, из которой навита цилиндрическая пружина, выполненное перпендикулярной ее оси плоскостью. При таком рассмотрении можно абстрагироваться от спиральной формы и мысленно разбить весь объем проволоки на множество соприкасающихся торцевыми поверхностями «цилиндров», диаметр которых равен диаметру проволоки, а высота стремится к нулю. Между соприкасающимися торцами действуют молекулярные силы, препятствующие деформации.

При растяжении или сжатии пружины угол наклона между витками изменяется. Соседние «цилиндры» при этом вращаются друг относительно друга в противоположных направлениях вокруг общей оси. В каждом таком сечении запасается энергия. Отсюда следует, что чем из более длинного куска проволоки навита пружина (здесь играют роль диаметр и высота цилиндра, а также шаг витка), тем большее количество энергии она способна запасти. Увеличение диаметра проволоки также повышает ее энергоемкость. В целом формула, учитывающая основные факторы жесткости пружины, выглядит так:

  • $R$ — радиус цилиндра пружины,
  • $n$ — количество витков проволоки радиуса $r$,
  • $G$ — коэффициент, зависящий от материала.

Рассчитать коэффициент жесткости пружины, выполненной из стальной проволоки с $G = 8 cdot 10^<10>$ Па и диаметром 1 мм. Радиус пружины 20 мм, количество витков – 25.

Подставим в формулу числовые значения, попутно переведя их в единицы системы СИ:

Ответ: $100 frac<Н><м>$

Так и не нашли ответ на свой вопрос?

Просто напиши с чем тебе нужна помощь

Пружины можно назвать одной из наиболее распространенных деталей, которые являются частью простых и сложных механизмов. При ее изготовлении применяется специальная проволока, накручиваемая по определенной траектории. Выделяют довольно большое количество различных параметров, характеризующих это изделие. Наиболее важным можно назвать коэффициент жесткости. Он определяет основные свойства детали, может рассчитываться и применяться в других расчетах. Рассмотрим особенности подобного параметра подробнее.

Типы пружин

Пружины можно классифицировать по направлению прилагаемой нагрузки:

  • пружины растяжения; предназначены для работы в режиме растягивания, при деформации их длина увеличивается; как правило, такие устройства имеют нулевой шаг, т.е. намотаны «виток к витку»; примером могут служить пружины в весах-безменах, пружины для автоматического закрытия дверей и т.д.;
  • пружины сжатия под нагрузкой, напротив, укорачиваются; в исходном состоянии между их витками есть некоторое расстояние, как, например, в амортизаторах автомобильных подвесок.

В данной статье рассматриваются пружины, представляющие собой цилиндрические спирали. В технике применяется много других разновидностей упругих устройств: пружины в виде плоских спиралей (используются в механических часах), в виде полос (рессоры), пружины кручения (в точных весах), тарельчатые (сжимающиеся конические поверхности) и т.п. Своего рода пружинами являются амортизирующие изделия из полимерных эластичных материалов, прежде всего резины. Во всех этих устройствах используется один и тот же принцип — запасать энергию упругой деформации и возвращать ее.

Готовые работы на аналогичную тему

  • Курсовая работа Жесткость пружины, формула 490 руб.
  • Реферат Жесткость пружины, формула 230 руб.
  • Контрольная работа Жесткость пружины, формула 230 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Трактовка понятий

В физике упругая деформация возникает из-за силы, равной по модулю оказываемому воздействию. Сила упругости для пружины (F) пропорциональна её удлинению. Для определения жесткости пружины зависимость записывается математически с помощью следующей формулы: F = k·x; где х — длина предмета после его растяжения, а k — коэффициент жесткости.

Формула считается частным случаем закона Гука, который используется для растяжимого тонкого стержня. Чрезмерное воздействие приводит к появлению разных дефектов. Для процесса характерны некоторые особенности, от чего зависит жесткость пружины:

  • геометрические параметры детали;
  • срок эксплуатации;
  • значение коэффициента k, который при определённых условиях способствует снижению сжатия и сохранению силы на одинаковом уровне;
  • тип используемого материала (сталь, сплав) в процессе изготовления пружины.

На практических занятиях по физике в 7 классе применяются изделия разных типов. В автомобилестроении используется цветовое обозначение. Для расчета коэффициента жесткости пружины специалисты ориентируются на формулу k=Gd 4 /8D 3 n, где:

  • G — определяет модуль сдвига (свойство зависит, к примеру, от используемого сырья);
  • d — диаметр куска проволоки (величина определяется в период производства путём проката, а результат записывается в технической документации);
  • D — диаметр витков, которые получаются в результате намотки на проволоку (расчет осуществляется с учетом поставленных задач и зависит от нагрузки, оказываемой для сжатия объекта);
  • n — количество витков в системе (показатель варьируется в значительном диапазоне, от чего зависят эксплуатационные характеристики предмета).

С помощью формулы может измеряться жёсткость цилиндрической пружины, используемой в разных механизмах. Показатель измеряется в Ньютонах и обозначается Н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector