Схемы генераторов с возбуждением от выхода генератора — схемы без дополнительных диодов

Область применения

Синхронные генераторы – устройства, предназначенные для добычи переменного тока. Встретить такие устройства можно на различных станциях:

  • атомных;
  • тепловых;
  • гидроэлектростанциях.

А также агрегаты активно используются в транспортных системах. Их применяют в различных автомобилях, в судовых системах. Синхронный генератор способен работать как в автономном режиме, отдельно от электрической сети, так и одновременно с ней. При этом удается подключить сразу несколько агрегатов.

Преимуществом станций, вырабатывающих переменный ток, является возможность обеспечить выделенное пространство электроэнергией. Удобно, если объект находится далеко от центральной сети. Поэтому агрегаты пользуются спросом у владельцев ферм, отдаленных от города населенных пунктов.

Практическое применение

Индукционные генераторы находят свое применение практически во всех областях жизнедеятельности человеческого общества.

Причем в любом случае, для получения переменного тока используется энергия вращения вала генератора.

Это касается:

  1. Крупных гидро-, тепло-, и атомных электростанций.
  2. Промышленных электрогенераторов.
  3. Бытовых электрогенераторов.

Генераторы, устанавливаемые на электростанциях, вырабатывают большое количество электроэнергии, которая затем передается на огромные расстояния.

Они разрабатываются под конкретные, узкоспециализированные задачи и представляют собой сложнейшие устройства, для установки которых необходимо строить отдельные здания и сооружения. Кроме того, их работа обеспечивается специально организованной инфраструктурой.

Промышленные генераторы используются для обеспечения электроэнергией объектов, в работе которых не должно быть перебоев с подачей напряжения.

Кроме того, их используют для обеспечения электроэнергией строительных площадок, вахтовых поселков, удаленных ферм и буровых установок, находящихся в местах, где подводка стационарных линий электропередач невозможна или экономически нецелесообразна.

Как правило, для работы они используют дизельное топливо, вырабатывая при этом переменный ток большой мощности (220 или 380 В). Используются для этого синхронные генераторы, которые способны обеспечить работу промышленного оборудования большой мощности.

В дизельных установках, вал генератора вращается с помощью двигателя внутреннего сгорания (ДВС).

Электрогенератор на шасси

Все комплектующие изделия, входящие в состав промышленного генератора, монтируются на высокопрочных стальных шасси, которое при необходимости устанавливается:

  1. Теплоизолированным контейнером.
  2. Передвижным шасси (колесное, на полозьях).

Бытовые электрогенераторы приобрели большую популярность сравнительно недавно.

Они используются для электрификации небольших коттеджей, загородных домов и дач, а также помогают решить ряд проблем, связанных с некорректной работой централизованной электросети и часто применяются в качестве аварийных источников переменного тока на ранее электрифицированных объектах подобного типа.

В устройствах этого типа для вращения вала генератора используют как бензиновые, так и дизельные ДВС. Они вырабатывают переменный ток небольшой мощности (от 0,5 до 15 кВт) и отличаются:

  1. Экономичностью.
  2. Небольшими размерами.
  3. Низким уровнем шума.

При выборе бытового генератора переменного тока, потенциальному потребителю необходимо обращать внимание на:

  1. Тип ДВС (бензиновый или дизельный).
  2. Заявленную в сопроводительной документации мощность.
  3. Тип генератора (синхронный или асинхронный).
  4. Фазность.
  5. Блок управления.
  6. Уровень шума.

Устройства генератора автомобиля

Из чего же состоит сам генератор, давайте перечисли эти части

  1. Шкив – насадка на вале на которую одеваются ремни, связывающие генератор и двигатель и через этот шкив и ремень вращательно движение, передается от двигателя к валу генератора
  2. Ротор генератора – металлический вал, на котором располагаются стальные втулки, между которыми в свою очередь расположена обмотка генератора, провода или выводы которой соединяются к закругленными контактными кольцами
  3. Статор – это трубообразный отрезок из специальных стальных листов, между которыми особым образом наматывается трехфазная обмотка генератора автомобиля
  4. Диодная сборка – служит для выпрямления напряжения автомобиля которое вырабатывает статор, а также преобразовывает его в постоянное напряжение
  5. Регулятор напряжения – так же расположен на генераторе и выполняет функцию поддержания напряжения в сети автомобиля в заданных приделах, исключая непредусмотренные колебания, возникаемые во время езды или из-за атмосферных условий
  6. Щеточный узел генератора – это так называемы специальные щетки, которые напрямую контактируют или так сказать трутся постоянно о кольцо ротора
  7. Корпус генератора – является основным кожухом генератора, в котором и располагаются все вышеперечисленные узлы, а также является и системой предохранения от внешних воздействий и дополнительно служит радиатором охлаждения генератора

Вот схема генератора автомобиля для тех, кто понимает

А вот ротор поподробнее, фото автомобильного ротора ниже

  • Вал самого ротора
  • Полюса положительные и отрицательны на роторе
  • Обмотка возбуждения
  • Металлические контактные кольца

Как выбрать?

При выборе генератора важно найти подходящее и надежное устройство, которое сможет обеспечить электроэнергией отведенную площадь. Для начала необходимо определиться с техническими параметрами будущего устройства

Специалисты советуют обратить внимание на:

  • массу электрогенератора;
  • габариты устройства;
  • мощность;
  • расход топлива;
  • показатель шума;
  • продолжительность работы.

А также важным параметром является возможность организации автоматической работы. Чтобы понять, сколько фаз требуется будущему генератору, необходимо определиться с типом и количеством электроприборов, которые будут к нему подключаться.

Однако не всегда покупка подобной мобильной электростанции становится лучшим решением.

Перед покупкой дополнительно рекомендуется учесть нагрузку, которая будет оказана на устройство во время его работы. На каждую фазу должна приходиться нагрузка максимум в 30% от общего количества. Таким образом, если мощность генератора составляет 6 кВт, то в случае использования розеток с напряжением в 220 В удастся задействовать только 2 кВт.

Покупка трехфазного генератора востребована только тогда, когда в доме много трехфазных потребителей. Если большинство приборов однофазные, лучше приобрести соответствующий агрегат.

Виды

Сегодня производители выпускают несколько видов синхронных генераторов. Среди существующих классификаций особого внимания заслуживают несколько. В первую очередь стоит рассмотреть деление агрегатов по конструктивному устройству. Генераторы бывают двух видов.

Бесщеточный. Конструкция электрогенератора подразумевает использование обмоток статора. Они размещены так, чтобы сердечники элементов совпадали с направлением либо магнитных полюсов, либо сердечников, которые предусмотрены на катушке. Максимальное количество зубьев магнита не должно превышать 6 штук.

Следующая классификация подразумевает деление мобильных станций на отдельные виды.

Гидрогенераторы. Отличительная черта устройства – ротор с выраженными полюсами. Такие агрегаты используют для производства электроэнергии там, где нет необходимости в обеспечении большого количества оборотов устройства.

Выделяют несколько распространенных моделей подобных устройств.

Шаговые. Их используют для обеспечения работоспособности приводов, установленных в механизмах, которые имеют цикл работы старт-стоп.

Безредукторные. В основном используются в автономных системах.

Первые представляют собой устройства, в которых четко просматриваются полюса. Они отличаются небольшой скоростью вращения ротора. Вторая категория имеет в своей конструкции цилиндрический ротор, у которого отсутствуют выступающие полюса.

Принцип действия

С принципом работы устройства разобраться не так уж сложно. Он заключается во вращении магнитной рамки с целью создания электрического поля. В процессе вращения рамки возникают магнитные линии, начинающие пересекать ее контур. Пересечение способствует образованию электрического тока.

Чтобы определить, куда движутся потоки электрической энергии, необходимо воспользоваться правилом буравчика. При этом стоит отметить, что на некоторых участках движение тока противоположное. Направления постоянно меняются при достижении очередного полюса, который расположен на магните. Такое явление называется переменным током, и доказать это условие способно подключение рамки к отдельному магнитному кольцу.

Зависимость между величиной тока в рамке и скоростью вращения ротора системы пропорциональная. Таким образом, чем сильнее будет вращаться рамка, тем больше электричества сможет поставить генератор. Такой показатель характеризуется частотой вращения.

Согласно установленным нормам, оптимальный показатель частоты вращения в большинстве стран не должен превышать 50 Гц. Это значит, что ротор должен выполнять 50 колебаний в секунду. Для вычисления параметра необходимо условиться, что один поворот рамки приводит к изменению направления тока.

Если вал успевает повернуться 1 раз за секунду, это означает, что частота электрического тока составляет 1 Гц. Таким образом, для достижения показателя в 50 Гц потребуется обеспечить правильное количество вращений рамки за секунду.

Зависимость в этом случае обратно пропорциональная. Таким образом, чтобы обеспечить частоту в 50 Гц, потребуется снизить скорость примерно в 2 раза.

Дополнительно стоит отметить, что в некоторых странах установлены другие нормы вращения ротора. Стандартным показателем частоты является показатель в 60 Гц.

Устройство генератора переменного тока

Схематическое устройство однофазного генератора переменного тока. Генератор с вращающимися магнитными полюсами и неподвижным статором.

Автомобильный генератор переменного тока в разрезе. Видны полюсные наконечники.

К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой»), нейтральный провод отсутствует.

По конструкции можно выделить:

  • генераторы с неподвижными магнитными полюсами и вращающимся якорем;
  • генераторы с вращающимися магнитными полюсами и неподвижным статором.

Последние получили большее распространение, так как благодаря неподвижности статорной обмотки отпадает необходимость снимать с ротора большой ток высокого напряжения с использованием скользящих контактов (щёток) и контактных колец.

Подвижная часть генератора называется ротор, а неподвижная — статор.

Статор собирается из отдельных железных листов, изолированных друг от друга. На внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора.

Ротор изготавливается, обычно, из сплошного железа, полюсные наконечники магнитных полюсов ротора собираются из листового железа. При вращении между статором и полюсными наконечниками ротора присутствует минимальный зазор, для создания максимально возможной магнитной индукции. Геометрическая форма полюсных наконечников подбирается такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному.

На сердечники полюсов посажены катушки возбуждения, питаемые постоянным током. Постоянный ток подводится с помощью щёток к контактным кольцам, расположенным на валу генератора.

По способу возбуждения генераторы переменного тока делятся на:

  • генераторы, обмотки возбуждения которых питаются постоянным током от постороннего источника электрической энергии, например от аккумуляторной батареи (генераторы с независимым возбуждением).
  • генераторы, обмотки возбуждения которых питаются от постороннего генератора постоянного тока малой мощности (возбудителя), сидящего на одном валу с обслуживаемым им генератором.
  • генераторы, обмотки возбуждения которых питаются выпрямленным током самих же генераторов (генераторы с самовозбуждением). См также бесщёточный синхронный генератор.
  • генераторы с возбуждением от постоянных магнитов.

Конструктивно можно выделить:

  • генераторы с явно выраженными полюсами;
  • генераторы с неявно выраженными полюсами.

По количеству фаз можно выделить:

  • Однофазные генераторы. См. также конденсаторный двигатель, однофазный двигатель.
  • Двухфазные генераторы. См. также двухфазная электрическая сеть, двухфазный двигатель.
  • Трёхфазные генераторы. См. также трёхфазная система электроснабжения, трёхфазный двигатель.

По соединению фазных обмоток трёхфазного генератора:

  • шестипроводная система Тесла (практического значения не имеет);
  • соединение «звездой»;
  • соединение «треугольником»;
  • соединение «Славянка», сочетающее шесть обмоток в виде одной «звезды» и одного «треугольника» на одном статоре.

Наиболее распространено соединение «звездой» с нейтральным проводом (четырёхпроводная схема), позволяющее легко компенсировать фазовые перекосы и исключающее появление постоянной составляющей и паразитных кольцевых токов в обмотках генератора, приводящих к потерям энергии и перегреву.

Так как на практике в электросетях с множеством мелких потребителей нагрузка на разные фазы не является симметричной (подключается разная электрическая мощность, или например, активная нагрузка на одной фазе, а на другой индуктивная или ёмкостная, то при соединении «треугольником» или «звездой» без нейтрального провода можно получить такое неприятное явление как «перекос фаз», например, лампы накаливания, подключенные к одной из фаз, слабо светятся, а на другие фазы подаётся чрезмерно большое электрическое напряжение и включенные приборы благополучно «сгорают».

К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой») с нейтральным проводом.

К трёхфазному генератору (соединение «треугольником») подключена активная нагрузка (соединение «треугольником»).

Как проверить генератор мультиметром

Диодный мост генератора можно проверить мультиметром, но также можно также воспользоваться стендом, которым проверяли регулятор.

Но перед этим, прежде всего, не снимая выпрямительный мост с генератора, подсоедините красный провод тестера к клемме 30 генератора, а чёрный провод — к корпусу. Режим работы тестера выставьте на прозвонку (иконка диода). Если его нет, то ставьте на 1−2 кОм. Мультиметр должен показывать бесконечность. Если показания другие, диодный мост неисправен.

Затем проверьте выпрямители тока на пробой. Положительный (красный) щуп оставьте на клемме 30, отрицательным коснитесь болтов крепления моста по очереди. Дисплей мультиметра во всех случаях должен выдавать бесконечность, любые другие означают пробой.

Далее положительный щуп подсоедините к болтам крепления моста, а отрицательный к корпусу генератора. В этом случае тестер также должен выдавать бесконечность.

Но на практике такой проверки чаще всего бывает недостаточно. В большинстве случаев требуется более детально прозвонить генератор.

Тщательная прозвонка

Для этого открутите крепёжные болты выпрямительного блока, отсоедините медные провода обмотки статора и снимите диодный мост с генератора. Теперь можно проверить индивидуально каждый полупроводник. Перед проверкой желательно промыть стабилизатор проточной водой, используя щётку средней жёсткости, а затем тщательно высушить. Для быстрой сушки вполне подойдёт фен для волос.

Один из щупов тестера закрепите на диодной пластине, второй подсоедините к центральному выводу каждого диода, закреплённого на этой пластине. Затем поменяйте щупы местами. В одном случае мультиметр должен показать бесконечность, в другом — номинальное сопротивление, равное примерно 570−590 Ом. Выпрямители считаются неисправными, если:

  • В первом и втором замере (когда сменили полярность) показания мультиметра одинаковы;
  • Сопротивление диодов больше или меньше номинальных значений.

Со второй пластиной диодного моста произведите те же действия. Если обнаружена неисправность одного или нескольких диодов, проще будет заменить выпрямительный блок целиком. Правда, попадаются умельцы, которые меняют вышедшие из строя диоды по отдельности, но такая работа требует определённого навыка и сноровки.

Проверка обмоток якоря и статора

При дальнейшей проверке требуется полностью разобрать генератор. В первую очередь визуально проверьте якорь. Кольца щёток не должны иметь почернений, сколов и износа беговых дорожек. Почернения и небольшой износ можно зачистить наждачной шкуркой-нулевкой. Кольца, имеющие глубокие канавки, нужно заменить или — если позволяет толщина колец — проточить на токарном станке.

Обмотка якоря не должна явно пахнуть гарью. Цвет обмотки должен быть однородным, не иметь повреждений и разрывов. Для проверки обмотки якоря на обрыв понадобится мультиметр. Выставьте режим работы на прозвонку или замер сопротивления и подсоедините щупы к щёточным кольцам. Сопротивление обмотки должно быть в пределах 3−5 Ом. Затем один щуп оставьте на кольце, другой соедините с корпусом. Дисплей мультиметра должен показать бесконечность.

Статор генератора диагностируется после извлечения из корпуса. В первую очередь проведите визуальный осмотр. Не должно быть видимых повреждений проволоки и её изоляции. Затем провод тестера соедините с корпусом статора. Вторым проводом коснитесь выводов по очереди. Их всего три. Тестер должен быть в режиме прозвонки. Если на дисплее бесконечность, то это говорит об исправности статора.

Дальнейшая проверка состоит в диагностике обмоток. Сопротивление всех трёх обмоток должно быть одинаковым.

Перед сборкой генератора нужно проверить и при необходимости заменить подшипники. При проворачивании они не должны подклинивать или издавать скрипящий звук. Это говорит о том, что они сильно изношены и вскоре они выйдут из строя. Поэтому их лучше сразу заменить.

Схемы подключения

По числу использующихся фаз все генераторные агрегаты делятся на две группы:

  • однофазные;
  • трехфазные.

Однофазный генератор

Схема подключения оборудования с одной фазой

Этот тип устройств используется для работы с любыми потребителями электроэнергии, главное — чтобы они были однофазными.

Самые простые конструкции состоят из:

  • магнитного поля;
  • прокручивающейся рамки;
  • коллекторного устройства, предназначенного для отвода тока.

Благодаря наличию последнего в результате рамочного прокручивания через щетки образуется постоянный контакт с рамкой. Параметры тока, который меняется с учетом закона гармоники, будут разными и передаются на щеточный узел, а также в схему потребителей напряжения. На сегодняшний день однофазные агрегаты являются наиболее популярным типом автономного источника питания. Они могут использоваться для подключения практически всех бытовых электроприборов.

Трехфазный генератор

Такой тип устройств относится к классу универсальных, но более дорогих агрегатов. Отличительная особенность трехфазных генераторов заключается в необходимости постоянного и дорогостоящего технического обслуживания. Несмотря на это, данный тип установок получил наибольшее распространение.

Это обусловлено следующими преимуществами:

  1. В основе агрегата используется вращающееся круговое магнитное поле. Это обеспечивает возможность хорошей экономии при разработке оборудования.
  2. Трехфазные генераторы состоят из уравновешенной системы. Это обеспечивает ресурс эксплуатации агрегата в целом.
  3. В работе трехфазного устройства одновременно используется два напряжения — линейное и фазовое. Оба применяются в единой системе.
  4. Одно из основных преимуществ — повышенные экономические показатели. Это обеспечивает снижение материалоемкости силовых проводов, а также трансформаторных агрегатов. Благодаря данной особенности упрощается процедура передачи электричества на большие расстояния.

Схема соединения «звездой»

Данный тип подключения подразумевает электросоединение концов обмоток в определенной точке, которая именуется «нулем». При выполнении такого подсоединения нагрузку к генераторному узлу можно подать посредством трех или четырех кабелей. Проводники от начала обмоток считаются линейными. А основной кабель, который идет от нулевой точки, является нулем. Параметр напряжения между проводниками считается линейным (эта величина выше в 1,73 раза по сравнению с фазной).

Схема типа «звезда» для подключения трехфазного оборудования

Одной из основных особенностей данного варианта является равенство токов. Четырехпроводной тип «звезды» с нейтральным кабелем считается самым распространенным. Его использование позволяет предотвратить перекос фаз при подсоединении несимметричной нагрузки. К примеру, если на одном контакте она активная, а на другом — реактивная или емкостная. При использовании такого варианта обеспечивается максимальная защищенность включенного электрооборудования.

Схемы соединения «треугольником»

Данный метод подключения представляет собой последовательное подсоединение обмоток трехфазного агрегата. Конец первой намотки должен быть соединен с началом второй, а ее контакт — с третьей. Затем проводник от обмотки под номером 3 подсоединяется к началу первого элемента.

При такой схеме линейные кабели отводятся от точек подключения обмоток. Параметр линейного напряжения по величине соответствует фазному. А значение первого тока выше второго в 1,73 раза. Описанные свойства актуальны исключительно в случае равномерной нагрузки фаз. Если она будет неравномерной, то параметры необходимо пересчитать графическим или аналитическим способом.

Электросхемы соединений агрегата «треугольником»

Устройство и принцип работы

Любой электрогенератор превращает механический импульс в электрический ток. Его получение происходит за счет кручения катушки из проволоки, помещаемой в магнитное поле. Катушка делится на две главные части: жестко зафиксированный магнит и рамка из проволоки. Оба наконечника катушки связываются механически за счет контактного кольца, скользящего по угольной щетке. Эта щетка проводит электрический ток.

Принцип действия генератора подразумевает также то, что импульс, который вырабатывает вращающая часть, поступает на кольцо внутреннего контакта. Происходит это точно в момент прохождения части рамки около северного края магнита. Источник переменного тока работает обычно по принципу так называемой сильной выработки тока.

Действовать он начинает при запуске системы зажигания. В этот момент ток через контактные кольца движется на щеточный узел и на систему возбуждения. Там он вырабатывает магнитное поле. Ротор, присоединенный к коленвалу, вырабатывает электромагнитные колебания. Переменный наведенный ток образуется на выводе перемотки. Частота кручения самовозбуждающегося генератора растет вплоть до определенного уровня, а после этого срабатывает выпрямитель.

Хотя основной принцип выработки тока состоит во взаимодействии магнитного поля, ротора и статора, вращать движущуюся часть могут различные источники механической энергии. Ими могут быть:

  • текучая вода;

  • горячий пар;

  • ветер;

  • моторы внутреннего сгорания.

Синхронный тип генератора отличается совпадением частот кручения статоров и роторов. В качестве ротора применяется постоянный магнит. Когда устройство запускают, ротор начинает вырабатывать слабое поле. Как только растут обороты, начинает вырабатываться большая электрическая сила. Импульс проходит через регулятор напряжения и выдается в электрическую сеть.

Асинхронные модели непрерывно работают в тормозящем режиме. Ротор крутится с опережением, а его ориентация совпадает с ориентацией магнитного поля, создаваемого статором. Роторы могут относиться к фазному либо короткозамкнутому варианту.

Магнитное поле в асинхронных устройствах не подлежит регулировке. Потому частота и ампераж тока определяются непосредственно числом витков аппарата. В последние десятилетия заметную роль играют электрохимические генераторы, которые вырабатывают ток на основе водорода. Их пытаются использовать в автомобилях, однако, пока вытеснить ДВС не получается. Еще один вариант генератора — солнечная батарея работает за счет фотоэффекта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector